

 Manual

 XL Driver Library
API Description

Version 7.5
English

Imprint

Vector Informatik GmbH
Ingersheimer Straße 24
D-70499 Stuttgart

The information and data given in this user manual can be changed without prior notice. No part of this manual may be reproduced in
any form or by any means without the written permission of the publisher, regardless of which method or which instruments, electronic
or mechanical, are used. All technical information, drafts, etc. are liable to law of copyright protection.
© Copyright 2010, Vector Informatik GmbH. Printed in Germany.
All rights reserved.

Manual Table of contents

© Vector Informatik GmbH Version 7.5 - I -

Table of contents

1 Introduction 5
1.1 About this User Manual 6

1.1.1 Access Help and Conventions 6
1.1.2 Certification 7
1.1.3 Warranty 7
1.1.4 Support 7
1.1.5 Registered Trademarks 7

2 XL Driver Library Overview 9
2.1 General Information 10
2.2 Features 11
2.3 LIN Basics 14
2.4 Flowcharts 15

2.4.1 CAN Application 15
2.4.2 LIN Application 16
2.4.3 DAIO Application 17

3 User API Description 19
3.1 Bus Independent Commands 20

3.1.1 xlOpenDriver 20
3.1.2 xlCloseDriver 20
3.1.3 xlGetApplConfig 20
3.1.4 xlSetApplConfig 21
3.1.5 xlGetDriverConfig 22
3.1.6 xlGetChannelIndex 25
3.1.7 xlGetChannelMask 26
3.1.8 xlOpenPort 26
3.1.9 xlClosePort 29
3.1.10 xlSetTimerRate 29
3.1.11 xlSetTimerRateAndChannel 30
3.1.12 xlResetClock 31
3.1.13 xlSetNotification 31
3.1.14 xlFlushReceiveQueue 32
3.1.15 xlGetReceiveQueueLevel 32
3.1.16 xlActivateChannel 32
3.1.17 xlReceive 33
3.1.18 xlGetEventString 34
3.1.19 xlGetErrorString 34
3.1.20 xlGetSyncTime 35
3.1.21 xlGenerateSyncPulse 35
3.1.22 xlPopupHwConfig 35
3.1.23 xlDeactivateChannel 36
3.1.24 xlGetLicenseInfo 36

3.2 CAN Commands 38
3.2.1 xlCanSetChannelOutput 38
3.2.2 xlCanSetChannelMode 38
3.2.3 xlCanSetReceiveMode 39
3.2.4 xlCanSetChannelTransceiver 39
3.2.5 xlCanSetChannelParams 41
3.2.6 xlCanSetChannelParamsC200 42

Table of contents Manual

- II - Version 7.5 © Vector Informatik GmbH

3.2.7 xlCanSetChannelBitrate 43
3.2.8 xlCanSetChannelAcceptance 43
3.2.9 xlCanAddAcceptanceRange 44
3.2.10 xlCanRemoveAcceptanceRange 45
3.2.11 xlCanResetAcceptance 46
3.2.12 xlCanRequestChipState 47
3.2.13 xlCanTransmit 47
3.2.14 xlCanFlushTransmitQueue 48

3.3 LIN Commands 49
3.3.1 xlLinSetChannelParams 49
3.3.2 xlLinSetDLC 50
3.3.3 xlLinSetChecksum 51
3.3.4 xlLinSetSlave 52
3.3.5 xlLinSwitchSlave 53
3.3.6 xlLinSendRequest 53
3.3.7 xlLinWakeUp 54
3.3.8 xlLinSetSleepMode 54

3.4 Digital/Analog Input/Output Commands 55
3.4.1 xlDAIOSetAnalogParameters 55
3.4.2 xlDAIOSetAnalogOutput 56
3.4.3 xlDAIOSetAnalogTrigger 56
3.4.4 xlDAIOSetDigitalParameters 57
3.4.5 xlDAIOSetDigitalOutput 58
3.4.6 xlDAIOSetPWMOutput 59
3.4.7 xlDAIOSetMeasurementFrequency 59
3.4.8 xlDAIORequestMeasurement 60

4 Event Structures 61
4.1 Basic Events 62

4.1.1 XL Event 62
4.1.2 XL Tag Data 63

4.2 CAN Event 64
4.2.1 XL CAN Message 64

4.3 Chip State Event 65
4.3.1 XL Chip State 65

4.4 Timer Events 66
4.4.1 Timer 66

4.5 LIN Events 66
4.5.1 LIN Message API 66
4.5.2 LIN Message 66
4.5.3 LIN Error Message 67
4.5.4 LIN Sync Error 67
4.5.5 LIN No Answer 67
4.5.6 LIN Wake Up 67
4.5.7 LIN Sleep 68
4.5.8 LIN CRC Info 68

4.6 Sync Pulse Events 69
4.6.1 Sync Pulse 69

4.7 DAIO Events 70
4.7.1 DAIO Data 70

4.8 Transceiver Events 71
4.8.1 Transceiver 71

5 Examples 73

Manual Table of contents

© Vector Informatik GmbH Version 7.5 - III -

5.1 Overview 74
5.2 xlCANdemo 75
5.3 xlCANcontrol 77
5.4 xlLINExample 79
5.5 xlDAIOexample 81
5.6 xlDAIOdemo 84

6 Error Codes 85
6.1 Error Code Table 86

7 Migration Guide 87
7.1 Overview 88

7.1.1 Bus Independent Function Calls 88
7.1.2 CAN Dependent Function Calls 89
7.1.3 LIN Dependent Function Calls 89

7.2 Changed Calling Conventions 90

8 Appendix A: Address Table 91

Manual Introduction

© Vector Informatik GmbH Version 7.5 - 5 -

1 Introduction

In this chapter you find the following information:

1.1 About this User Manual page 6
 Access Help and Conventions
 Certification
 Warranty
 Support
 Registered Trademarks

About this User Manual Manual

- 6 - Version 7.5 © Vector Informatik GmbH

1.1 About this User Manual

1.1.1 Access Help and Conventions

To find information
quickly

The user manual provides you the following access help:
 At the beginning of each chapter you will find a summary of the contents,
 In the header you can see in which chapter and paragraph you are ((situated)),
 In the footer you can see to which version the user manual replies,
 At the end of the user manual you will find an index, with whose help you will

quickly find information,
 Also at the end of the user manual on page 11 you will find a glossary in which

you can look up an explanation of used technical terms.

Conventions In the two following charts you will find the conventions used in the user manual
regarding utilized spellings and symbols.

Style Utilization

 Blocks, surface elements, window- and dialog names of the
software. Accentuation of warnings and advices.

bold

[OK] Push buttons in brackets
File | Save Notation for menus and menu entries

 Windows Legally protected proper names and side notes.
 Source code File name and source code.
 Hyperlink Hyperlinks and references.
 <STRG>+<S> Notation for shortcuts.

Symbol Utilization
 This symbol calls your attention to warnings.

 Here you can find additional information.

 Here is an example that has been prepared for you.

 Step-by-step instructions provide assistance at these points.

 Instructions on editing files are found at these points.

 This symbol warns you not to edit the specified file.

Manual Introduction

© Vector Informatik GmbH Version 7.5 - 7 -

1.1.2 Certification

Certified Quality
Management System

Vector Informatik GmbH has ISO 9001:2008 certification. The ISO standard is a
globally recognized standard.

1.1.3 Warranty

Restriction of
warranty

We reserve the right to change the contents of the documentation and the software
without notice. Vector Informatik GmbH assumes no liability for correct contents or
damages which are resulted from the usage of the user manual. We are grateful for
references to mistakes or for suggestions for improvement to be able to offer you
even more efficient products in the future.

1.1.4 Support

You need support? You can get through to our support at the phone number

+49 711 80670-200 or by fax

+49 711 80670-111

E-Mail: support@vector-informatik.de

1.1.5 Registered Trademarks

Registered
trademarks

All trademarks mentioned in this user manual and if necessary third party registered
are absolutely subject to the conditions of each valid label right and the rights of
particular registered proprietor. All trademarks, trade names or company names are
or can be trademarks or registered trademarks of their particular proprietors. All rights
which are not expressly allowed, are reserved. If an explicit label of trademarks,
which are used in this user manual, fails, should not mean that a name is free of third
party rights.

 Windows, Windows XP, Windows Vista, Windows 7 are trademarks of the
Microsoft Corporation.

Manual XL Driver Library Overview

© Vector Informatik GmbH Version 7.5 - 9 -

2 XL Driver Library Overview

In this chapter you find the following information:

2.1 General Information page 10

2.2 Features page 11

2.3 LIN Basics page 14

2.4 Flowcharts page 15
 CAN Application
 LIN Application
 DAIO Application

General Information Manual

- 10 - Version 7.5 © Vector Informatik GmbH

2.1 General Information

This document describes the API for the XL Driver Library. The library enables the
development of own applications for CAN, LIN, MOST, FlexRay or digital/analog I/O
based on Vector’s XL interfaces like CANcardX, CANcardXL, CANcardXLe,
CANcaseXL, CANcaseXL log, CANboardXL, CANboardXL PCIe, CANboardXL pxi,
VN26x0 and VN3x00.

Supported hardware

Info: The library does not support CANAC2 PCI, CANAC2 ISA and CANpari. For
CANcardX there is no LIN or digital/analog I/O support.

XL Driver Library The library is available for several XL interfaces including the corresponding drivers
for following operating systems:

 Windows XP (32 bit)
 Windows Vista (32 bit)
 Windows 7 (32 bit / 64 bit)

Furthermore, it is possible to build applications that run on different hardware and
operation systems without any code changes. Hardware related settings can be
configured in the Vector Hardware Configuration tool. It is possible to read those
settings during execution.

The XL Driver Library can be linked with your application which grants access to a
CANcab/piggy, LINcab/piggy, IOcab or to MOST. The library contains also a couple
of examples (including the source code) which show the handling of the different
functions for initialization, transmitting and receiving of messages.

Figure 1 depicts a basic overview of the construction of library application.

CANcaseXL CANboardXL

CAN/LIN bus

CANcardXL

C
A

N
/L

IN
ca

b

XL Driver

C
A

N
/L

IN
ca

b

C
A

N
/L

IN
pi

gg
ie

s

C
A

N
/L

IN
pi

gg
ie

s

C
A

N
/L

IN
pi

gg
ie

s

C
A

N
/L

IN
pi

gg
ie

s

CANcardXL

D
A

IO
ca

b

D
A

IO
ca

b

Virtual CAN card

Digital/
Analog

measure

Application 01

XL Driver Library

Application 02

XL Driver Library

Digital/
Analog

measure

VN2600
FOT RX FOT TX

MOST ring

Applications
overview

Figure 1: Possible applications with the XL Driver.

Hardware installation Please refer to the user manual of your hardware for detailed information about the
hardware installation.

Manual XL Driver Library Overview

© Vector Informatik GmbH Version 7.5 - 11 -

2.2 Features

Multi hardware The API is hardware independent and supports various Vector XL and VN interfaces.
The bus type depends on the interface and the used Cabs or Piggybacks. Please
refer to the user manual of the corresponding hardware for additional information or to
the accessories manual on the Vector Driver Disk.

Multi application The driver is designed for multi-processing (multi-tasking) operating systems, i.e.
multiple applications can use the same channel of a CAN hardware at the same time
(see Figure 2).

Info: If a Vector XL or VN interface is used for LIN, MOST, FlexRay or DAIO, a
channel can only be used by one application at the same time.

CAN Applications

Hardware

XL - Driver

Port (0)
access mask to adress all channels: 0x00F

Receive Queue 01

Hardware 01
e.g.: CANcardXL with CANcabs

Channel 01
Access Mask:

0x001

Channel 02
Access Mask:

0x002

Hardware 02
e.g.: CANcaseXL with CANpiggys

Channel 01
Access Mask:

0x004

Channel 02
Access Mask:

0x008

Transmit
Queue 01

Transmit
Queue 02

Hardware 03
e.g.: CANboardXL with CANpiggys

Channel 01
Access Mask:

0x010

Channel 02
Access Mask:

0x020

Transmit
Queue 03

Transmit
Queue 04

Port (1)
access mask to adress all channels: 0x030

Receive Queue 02

Transmit
Queue 05

Transmit
Queue 06

CAN Application 01
got ‚init access’ to all channels CAN Application 02

Principle structure
for CAN applications

Figure 2: Accessing XL interfaces.

CAN The library is designed to run multiple CAN applications using the same hardware
concurrently by enveloping the hardware interfaces. The sequential calling convention
is shown on page 15.

LIN The LIN implementation supports no multi-application functionality like for CAN, i.e.
only one application can access a channel (must have init access, see
xlOpenPort). The sequential calling convention is shown on page 16.

MOST The MOST implementation currently supports no multi-application functionality. It is
also required that an application has init access (see xlOpenPort). The API

Features Manual

- 12 - Version 7.5 © Vector Informatik GmbH

description is available in the separate document
XL Driver Library – MOST API Description.pdf

which can be found in the doc folder of the XL Driver Library.

FlexRay The API description is available in the separate document
XL Driver Library – FlexRay API Description.pdf

which can be found in the doc folder of the XL Driver Library. The implementation
supports mulit-application functionality. For further information see chapter: “General
information - Multiapplication support”

DAIO The DAIO implementation supports limited multi-application functionality, i.e. only the
first application (the one with granted init access, see xlOpenPort) can change
DAIO parameters. All other applications can receive measured messages only, if the
IOcab is configured for measurement by the first application. Please refer to the
IOcab documentation for more details about measurement and input/output
configuration. The sequential calling convention is shown on page 17.

General use of the
XL Driver Library

In order to get driver access, the application must open a driver port and retrieve a
port handle. This port handle is used for all subsequent calls to the driver. If a second
application is demanding driver access, it gets the handle to another port. An
application can open multiple ports.

Transmitting and
receiving messages

In order to transmit a message, the application has to choose one or more physical
channels which are connected to the port. The application calls the driver afterwards.
Bit masks identify the channels (here it is called access mask or channel mask).
The message is passed to every selected channel and is transmitted when possible.

If a hardware channel receives a message, it passes the message to every port that
is using this channel. Each port maintains its own receive queue. The application at
this port can poll the queue to determine whether there are incoming messages. See
Figure 2 for an overview.

E.g. in C/C++ A thread reads out the driver message queue after an event was notified by a
WaitForSingleObject.

 Consequently, an application may demand initialization access for a channel. A
channel only allows one port to have this access. For a LIN port it is needed to have
init access (see xlOpenPort).

C/C++ access

The applications can get driver access by using a Windows DLL and a C header file.

.NET Access A .NET wrapper is provided for .NET 2.0 or later in order to use the XL API in any
.NET language. See the separate documentation

XL Driver Library - .NET Wrapper Description.pdf

for detailed information.

 Files File name Description

 vxlapi.dll 32 bit DLL for Windows XP/Vista/7

 vxlapi64.dll 64 bit DLL for Windows 7

 vxlapi.h C header

Manual XL Driver Library Overview

© Vector Informatik GmbH Version 7.5 - 13 -

File name Description Files
vxlapi_NET20.dll .NET2.0 wrapper.

Supports 32 bit and 64 bit version of vxlapi.dll.

vxlapi_NET20.xml Wrapper documentation,
used by IntelliSense function

Dynamically
loading of the
XL Driver Library

If you want to load the vxlapi.dll dynamically, please insert xlLoadlib.cpp
into your project. (This module is used within the xlCANcontrol demo program). The
vxlapi.h supports loading of vxlapi.dll dynamically. It is only needed to set the
DYNAMIC_XLDRIVER_DLL define. It is not necessary to change your source code,
since xlOpenDriver() loads the dll and xlCloseDriver()unloads it.

DllMain It is not possible to initialize the XL Driver Library in a superior DLL within a DllMain
function.

The library includes debug prints for developing. To switch on the XL Library debug
prints, use the Vector Hardware Configuration tool. Go to the section General
information | Settings and open the Configuration flags dialog. There you can
enter the debug flags:

Debug prints

flags = 0x400000 for the XL Library.
flags = 0x2000 (basic) and 0x4000 (advanced) for MOST.
flags = 0x010000 (basic) and 0x020000 (advanced) for FlexRay.

To activate the flags it is needed to restart the driver and the entire application. To
view the debug prints, the freeware tool DebugView from
http://www.sysinternals.com (now Microsoft) can be used.

Vector
Hardware Config

Figure 3: Hardware configuration

http://www.sysinternals.com/

LIN Basics Manual

- 14 - Version 7.5 © Vector Informatik GmbH

2.3 LIN Basics

Advantages of LIN LIN (Local Interconnect Network) is a cheap way to connect many sensors and
actuators to an ECU via one common communication medium (bus). This diminishes
complexity as well as costs, weight and space problems and in addition it offers the
possibility of diagnostics. Furthermore, LIN offers a high flexibility to extend a system.

ECU ECU ECU ECU

CAN

S S A A

LIN

Functional principle The LIN network is based on a master-slave architecture where the LIN master is one
privileged node of the LIN network. The master consists of a master task as well as a
slave task, while the slaves only comprise a slave task.

The LIN master task controls slave tasks by sending special patterns called headers
on the bus at times defined within a so called schedule table. Such a header contains
a message address and can be viewed as a request to be responded to by one LIN
slave task. The total of header plus slave task response is called a LIN message. All
other slaves can either receive the LIN message or ignore it.

LIN schedule
t Header 10

t Header 21

t Header 33

LIN master Header 1

LIN slave 1 Response

LIN slave 2

LIN slave 3

LIN bus

Frame slot
t0

Frame
Header

Frame
response

Communictaion cycle

Header 2

Response

Frame slot
t1

Frame
Header

Frame
response

Header 3

Response

Frame slot
t2

Frame
Header

Frame
response

LIN message Generally there are 62 identifiers i.e. LIN messages possible within a LIN2.x network,
two of which (60 and 61) are dedicated to diagnostics on LIN (see xlLinSetDLC). A
response can contain up to eight data bytes (defined for each slave, see
xlLinSetSlave).

XL API The XL API comprises functions for the LIN master as well as the LIN slaves, allowing
sending and receiving messages on the LIN bus with any Vector XL Interface. If using
the XL API for the master, be sure to have it defined via xlLinSetChannelParams
with Master flag. Furthermore, the XL API can be simultaneously used for LIN slaves,
which must be configured separately via xlLinSetChannelParams (Slave flag),
xlLinSetDLC, xlLinSetChecksum and xlLinSetSlave. See the LIN flowchart
and the provided LIN examples for further details.

Manual XL Driver Library Overview

© Vector Informatik GmbH Version 7.5 - 15 -

2.4 Flowcharts

2.4.1 CAN Application

Init driver

xlCanSetChannelBitrate()

xlCanSetChannelOutput()

xlCanSetChannelParamsC200()

xlCanSetChannelParams()

xlCanSetChannelTransceiver()
xlCanSetChannelMode()

xlCanSetReceiveMode()

xlSetNotification()

xlCanAddAcceptanceRange() xlCanRemoveAcceptanceRange()

xlCanResetAcceptance() xlCanChannelSetAcceptance()

xlActivateChannel()

xlSetTimerRate()xlResetClock()

init access?

no

yes

xlReceive() xlCanTransmit()

xlGetEventString()

xlRequestChipState()

xlFlushReceiveQueue()

xlCanFlushTransmitQueue()

xlGetReceiveQueueLevel()

xlGetErrorString()

end

xlDeactivateChannel()

xlClosePort()

xlCloseDriver()

On Bus

Setup channels

Function()

Function()

Common API Functions

Special CAN API Functions

start

xlOpenDriver()

xlGetApplConfig()

xlGetChannelIndex()xlGetDriverConfig()

xlGetChannelMask()

xlSetApplConfig()

xlOpenPort()

Calling sequence

Figure 4: Function calls for CAN applications

Flowcharts Manual

- 16 - Version 7.5 © Vector Informatik GmbH

2.4.2 LIN Application

end

xlActivateChannel()

xlDeactivateChannel()

xlClosePort()

xlCloseDriver()

init access?

xlSetNotification()

xlSetTimerRate()

xlFlushReceiveQueue()

xlGetReceiveQueueLevel()

yes

no

xlReceive()

xlLinSetChannelParams()

LIN Master/Slave
Setup LIN Master Setup LIN Slave

xlLinSetDLC()

xlLinSendRequest()

xlLinWakeUp()

xlLinSetSleepMode()

xlResetClock()

Init driver
Setup channels

On Bus

xlLinSetSlave()

For each slave ID

Function()

Function()

Common API Functions

Special LIN API Functions

start

xlOpenDriver()

xlGetApplConfig()

xlGetChannelIndex()xlGetDriverConfig()

xlGetChannelMask()

xlSetApplConfig()

xlOpenPort()

xlLinSetChecksum()
xlLinSetDLC()

xlLinSetSlave()

xlLinSetChecksum()

xlLinSetSlave()

xlLinSwitchSlave()

xlLinSwitchSlave()

Calling sequence

Figure 5: Function calls for LIN applications

Manual XL Driver Library Overview

© Vector Informatik GmbH Version 7.5 - 17 -

2.4.3 DAIO Application

start

end

xlOpenDriver()

xlGetApplConfig()

xlGetChannelIndex()

xlGetDriverConfig()

xlOpenPort()

xlActivateChannel()

xlDeactivateChannel()

xlClosePort()

xlCloseDriver()

init access?

xlSetNotification()

xlSetTimerRate()

xlFlushReceiveQueue()

yes

no

xlGetChannelMask()

xlSetApplConfig()

xlReceive()

xlDAIOSetMeasurementFrequency()

xlResetClock()

xlDAIOSetDigitalOutput()

xlDAIOSetPWMOutput()

xlDAIOSetAnalogOutput()

xlDAIOSetAnalogTrigger()

xlDAIOSetAnalogParameters()

xlDAIORequestMeasurement()

xlDAIOSetDigitalParameters()

xlDAIOSetAnalogOutput()

xlDAIOSetAnalogTrigger()

xlDAIOSetAnalogParameters()

xlDAIOSetDigitalOutput()

xlDAIOSetPWMOutput()

xlDAIOSetDigitalParameters()

xlDAIOSetMeasurementFrequency()

Init driver
Setup IO

Measure
Function()

Function()

Common API Functions

Special DAIO API Functions

Only for receiving messages

*

*

*

* *

*

*

* only possible with ‚init access’

Calling sequence

Figure 6: Function calls for DAIO applications

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 19 -

3 User API Description

In this chapter you find the following information:

3.1 Bus Independent Commands page 20

3.2 CAN Commands page 38

3.3 LIN Commands page 49

3.4 Digital/Analog Input/Output Commands page 55

Bus Independent Commands Manual

- 20 - Version 7.5 © Vector Informatik GmbH

3.1 Bus Independent Commands

3.1.1 xlOpenDriver

Syntax XLstatus xlOpenDriver(void)

Description Each application must call this function to load the driver. If this call is not
successfully, no other API calls are possible.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.2 xlCloseDriver

Syntax XLstatus xlCloseDriver(void)

Description This function closes the driver.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.3 xlGetApplConfig

Syntax XLstatus xlGetApplConfig(

 char *appName
 unsigned int appChannel,
 unsigned int *pHwType,
 unsigned int *pHwIndex,
 unsigned int *pHwChannel,
 unsigned int busType)

Description Retrieves information about the application assignment which is set in the Vector
Hardware Configuration tool.

Input Parameters appName
Name of the application to be read.
Application names are listed in the Vector Hardware Configuration tool.

 appChannel
Selects the application channel (0,1, …). An application can offer several
channels which are assigned to physical channels (e.g. “CANdemo CAN1” to
CANcardXL Channel 1 or “CANdemo CAN2” to CANcardXL Channel 2).
Such an assignment has to be configured in Vector Hardware Config.

 busType
Specifies the bus type which is used by the application, e.g.:
- XL_BUS_TYPE_CAN
- XL_BUS_TYPE_LIN
- XL_BUS_TYPE_DAIO
- XL_BUS_TYPE_MOST
- XL_BUS_TYPE_FLEXRAY

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 21 -

Output Parameters pHwType
Hardware type is returned (see vxlapi.h),
e.g. CANcardXL
- XL_HWTYPE_CANCARDXL

 pHwIndex
Index of same hardware types is returned (0,1, ...),
e.g. for two CANcardXL on one system:
- CANcardXL 01: hwIndex = 0
- CANcardXL 02: hwIndex = 1

 pHwChannel
Channel index of same hardware types is returned (0,1, ...),
e.g. CANcardXL
- Channel 1: hwChannel = 0
- Channel 2: hwChannel = 1

Return Value Returns an error code.
Zero means success. See page 85 for further details.

3.1.4 xlSetApplConfig

Syntax

XLstatus xlSetApplConfig(

 char *appName,
 unsigned int appChannel,
 unsigned int hwType,
 unsigned int hwIndex,
 unsigned int hwChannel,
 unsigned int busType)

Description Creates a new application in Vector Hardware Config or sets the channel
configuration in an exiting application.

Input Parameters appName
Name of the application to be set.

 appChannel
Application channel (0,1, …) to be accessed.
If the channel number does not exist, it will be created.

 hwType
Contains the hardware type (see vxlapi.h),
e.g. CANcardXL
- XL_HWTYPE_CANCARDXL

 hwIndex
Index of same hardware types (0,1, ...),
e.g. for two CANcardXL on one system:
- CANcardXL 01: hwIndex = 0
- CANcardXL 02: hwIndex = 1

 hwChannel
Channel index of same hardware types (0,1, ...),
e.g. CANcardXL
- Channel 1: hwChannel = 0
- Channel 2: hwChannel = 1

 busType
Specifies the bus type for the application,

Bus Independent Commands Manual

- 22 - Version 7.5 © Vector Informatik GmbH

e.g.
- XL_BUS_TYPE_CAN
- XL_BUS_TYPE_LIN
- XL_BUS_TYPE_DAIO

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.5 xlGetDriverConfig

Syntax XLstatus xlGetDriverConfig(XLdriverConfig *pDriverConfig)

Description Allows reading out more detailed information about the used hardware. This function
can be called at any time after a successfully xlOpenDriver. The result describes
the current state of the driver configuration after each call.

Input Parameters XLdriverConfig
Points to a user buffer for the information which is returned by the driver.
See details below for further information.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

XLdriverConfig The driver returns the following structure containing the information:

Syntax typedef struct s_xl_driver_config {

 unsigned int dllVersion;
 unsigned int channelCount;
 unsigned int reserved[10];
 XLchannelConfig channel[XL_CONFIG_MAX_CHANNELS];
} XLdriverConfig;

Parameters dllVersion
The used dll version. (e.g. 0x300 means V3.0)

 channelCount
The number of available channels.

 reserved
Reserved field for future use.

 channel
Structure containing channels information
(here XL_CONFIG_MAX_CHANNELS=64)

XLchannelConfig The following sub structure is used in structure XLdriverConfig
(above-mentioned).

typedef struct s_xl_channel_config {

 char name [XL_MAX_LENGTH + 1];
 unsigned char hwType;

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 23 -

 unsigned char hwIndex;
 unsigned char hwChannel;
 unsigned short transceiverType;
 unsigned int transceiverState;
 unsigned char channelIndex;

 XLuint64 channelMask;
 unsigned int channelCapabilities;
 unsigned int channelBusCapabilities;
 unsigned char isOnBus;
 unsigned int connectedBusType;
 XLbusParams busParams;
 unsigned int driverVersion;
 unsigned int interfaceVersion;
 unsigned int raw_data[10];
 unsigned int serialNumber;
 unsigned int articleNumber;
 char transceiverName [XL_MAX_LENGTH + 1];
 unsigned int specialCabFlags;
 unsigned int dominantTimeout;
 unsigned int reserved[8];
}

 XLchannelConfig;

Parameters name
The channel’s name.

 hwType
Contains the hardware types (see vxlapi.h),
 e.g. CANcardXL
- XL_HWTYPE_CANCARDXL

 hwIndex
Index of same hardware types (0, 1, ...),
e.g. for two CANcardXL on one system:
- CANcardXL 01: hwIndex = 0
- CANcardXL 02: hwIndex = 1

 hwChannel
Channel index of same hardware types (0, 1, ...),
e.g. CANcardXL
- Channel 1: hwChannel = 0
- Channel 2: hwChannel = 1

 transceiverType
Contains type of Cab or Piggyback,
e.g. 251 Highspeed Cab
- XL_TRANSCEIVER_TYPE_CAN_251

 transceiverState
State of the transceiver.

 channelIndex
Global channel index (0, 1, ...).

 channelMask
Global channel mask (1 << channelIndex).

 channelCapabilities
Only for internal use.

Bus Independent Commands Manual

- 24 - Version 7.5 © Vector Informatik GmbH

 channelBusCapabilities
Describes the channel and the current transceiver features.

The channel (hardware) supports the bus types:
- XL_BUS_COMPATIBLE_CAN
- XL_BUS_COMPATIBLE_LIN
- XL_BUS_COMPATIBLE_DAIO
- XL_BUS_COMPATIBLE_HWSYNC
- XL_BUS_COMPATIBLE_MOST
- XL_BUS_COMPATIBLE_FLEXRAY

The connected Cab or Piggyback supports the bus type:
- XL_BUS_ACTIVE_CAP_CAN
- XL_BUS_ACTIVE_CAP_LIN
- XL_BUS_ACTIVE_CAP_DAIO
- XL_BUS_ACTIVE_CAP_HWSYNC
- XL_BUS_ACTIVE_CAP_MOST
- XL_BUS_ACTIVE_CAP_FLEXRAY

 isOnBus
The flag specifies whether the channel is on bus (1) or off bus (0).

 connectedBusType
The flag specifies to which bus type the channel is connected,
e.g.
- XL_BUS_TYPE_CAN
- …
Note: The flag is only set when the channel is on bus.

 busParams
Current bus parameters.

 driverVersion
Current driver version.

 interfaceVersion
Current interface API version.
e.g.
- XL_INTERFACE_VERSION

 raw_data
Only for internal use.

 serialNumber
Hardware serial number.

 articleNumber
Hardware article number.

 transceiverName
Name of the connected transceiver.

 specialCabFlags
Only for internal use.

 dominantTimeout
Only for internal use.

 reserved
Reserved for future use.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 25 -

XLbusParams The following structure is used in structure XLchannelConfig.

 typedef struct {

 unsigned int busType;
 union {
 struct {
 unsigned int bitRate;
 unsigned char sjw;
 unsigned char tseg1;
 unsigned char tseg2;
 unsigned char sam;
 unsigned char outputMode;
 }can;
 unsigned char raw[32];
 }data;
} XLbusParams;

Parameters busType
Specifies the bus type for the application.

 bitRate
This value specifies the real bit rate (e.g. 125000).

 sjw
Bus timing value sample jump width.

 tseg1
Bus timing value tseg1.

 tseg2
Bus timing value tseg2.

 sam
Bus timing value sam. Samples may be 1 or 3.

 outputMode
Actual output mode of the CAN chip.

 raw
Only for internal use.

3.1.6 xlGetChannelIndex

Syntax

int xlGetChannelIndex (

 int hwType,
 int hwIndex,
 int hwChannel);

Description Retrieves the channel index of a particular hardware channel.

Input Parameters hwType
Required to distinguish the different hardware types,
e.g.
- -1
- XL_HWTYPE_CANCARDXL
- XL_HWTYPE_CANBOARDXL
- …
Parameter -1 can be used, if the hardware type does not matter.

Bus Independent Commands Manual

- 26 - Version 7.5 © Vector Informatik GmbH

 hwIndex
Required to distinguish between two or more devices of the same hardware
type (-1, 0, 1…). Parameter -1 can be used to retrieve the first available
hardware. The type depends on hwType.

 hwChannel
Required to distinguish the hardware channel of the selected device (-1, 0, 1, …).
Parameter -1 can be used to retrieve the first available channel.

Return Value Returns the channel index.

3.1.7 xlGetChannelMask

Syntax

XLaccess xlGetChannelMask (

 int hwType,
 int hwIndex,
 int hwChannel);

Description Retrieves the channel mask of a particular hardware channel.

Input Parameters hwType
Required to distinguish the different hardware types, e.g.
- -1
- XL_HWTYPE_CANCARDXL
- XL_HWTYPE_CANBOARDXL
- …
Parameter -1 can be used if the hardware type does not matter.

 hwIndex
Required to distinguish between two or more devices of the same hardware
type (-1, 0, 1…). Parameter -1 is used to retrieve the first available hardware.
The type depends on hwType.

 hwChannel
Required to distinguish the hardware channel of the selected device (-1, 0, 1, …).
Parameter -1 can be used to retrieve the first available channel.

Return Value Returns the channel mask.

3.1.8 xlOpenPort

Syntax

XLstatus xlOpenPort(
 XlportHandle *portHandle,
 char *userName,
 XLaccess accessMask,
 XLaccess *permissionMask,
 unsigned int rxQueueSize,
 unsigned int xlInterfaceVersion,
 unsigned int busType)

Description Opens a port for a bus type (e.g. CAN) and grants access to the different channels
that are selected by accessMask. It is possible to open more ports on a channel, but
only the first one gets init access. The permissionMask returns the channels

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 27 -

which gets init access.

Input Parameters userName
The name of the application that is listed in the Vector Hardware Configuration
tool.

 accessMask
Mask specifying which channels shall be used with this port. The accessMask
can be retrieved by using xlGetChannelMask.

 rxQueueSize
- CAN, LIN, DAIO
Size of the port receive queue allocated by the driver. Specifies how many
events can be stored in the queue. The value must be a power of 2 and within a
range of 16…32768. The actual queue size is rxQueueSize-1.

- MOST, FlexRay
Size of the port receive queue allocated by the driver in bytes.

 xlInterfaceVersion
Current API version,
e.g.
- use XL_INTERFACE_VERSION to activate the XL interface (CAN, LIN, DAIO).
- use XL_INTERFACE_VERSION_V4 for MOST.

 busType
Bus type that should be activated,
e.g.
- use XL_BUS_TYPE_LIN to initialize LIN
- use XL_BUS_TYPE_CAN to initialize CAN
- use XL_BUS_TYPE_DAIO to initialize DAIO
- use XL_BUS_TYPE_MOST to initialize MOST
- use XL_BUS_TYPE_FLEXRAY to initialize FlexRay

Output Parameters portHandle
Pointer to a variable, where the portHandle is returned. This handle must be
used for any further calls to the port. If -1 is returned, the port was neither
created nor opened.

Input/Output
Parameters

 permissionMask
- on output
Pointer to a variable where the mask is returned for the channel for which init
access is granted.

- on input
As input there must be the channel mask where is the init access requested.
A LIN channel needs init access.

Return Value Returns an error code. For LIN (busType = XL_BUS_TYPE_LIN) init access is
needed. If the channel gets no init access the function returns
XL_ERR_INVALID_ACCESS.
Zero means success. See section Error Codes on page 85 for further details.

Bus Independent Commands Manual

- 28 - Version 7.5 © Vector Informatik GmbH

Example: Access Mask

This example should help to understand the meanings of channel index and channel
mask (access mask). Channels are identified by their channel index. Most functions
expect a bit mask (called access mask) to identify multiple channels. The bit mask is
constructed by: access mask = 1<<channel index

To get access to more than one channel, it is needed to merge (add) all wanted

channels: ∑wanted_access_masks

The following example is a possible configuration.

 Hardware Hardware

Channel
Channel

Index
Access Mask Access Mask

(hex) (bin)
 CANcardXL 000001 Channel 01 0 0x01
 000010 Channel 02 1 0x02
 CANcaseXL 000100 Channel 01 2 0x04
 001000 Channel 02 3 0x08
 CANboardXL 010000 Channel 01 4 0x10
 100000 Channel 02 5 0x20
 111111 All above- All above- All above- 0x3F

mentioned mentioned mentioned

Example: Select CANcardXL channel 1
m_xlChannelMask = xlGetChannelMask(XL_HWTYPE_CANCARDXL,-1, 0);
if(!m_xlChannelMask) return XL_ERR_HW_NOT_PRESENT;
xlPermissionMask = m_xlChannelMask;

xlStatus = xlOpenPort(&m_XLportHandle, "xlCANdemo",
 m_xlChannelMask, &xlPermissionMask,
 1024, XL_INTERFACE_VERSION,
 XL_BUS_TYPE_CAN);

Example: Open port with two channels with queue size of 256 events.
// calculate the channelMask for both channel
m_xlChannelMask_both = m_xlChannelMask[MASTER] |
 m_xlChannelMask[SLAVE];
xlPermissionMask = m_xlChannelMask_both;

xlStatus = xlOpenPort(&m_XLportHandle, "LIN Example",
 m_xlChannelMask_both, &xlPermissionMask,
 256,XL_INTERFACE_VERSION,
 XL_BUS_TYPE_LIN);

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 29 -

3.1.9 xlClosePort

XLstatus xlClosePort (XLportHandle portHandle) Syntax

Description The port is closed and the channels are deactivated.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.10 xlSetTimerRate

XLstatus xlSetTimerRate (
Syntax

 XLportHandle portHandle
 unsigned long timerRate)

Description This call sets up the rate for the port‘s cyclic timer events. The resolution is 10 µs
(timerRate of 1 means 10 µs, a timerRate of 10 means 100 µs). The minimum
and maximum timerRate values depend on the hardware. If a value is outside of
the allowable range the limit value is used.

Info: Timer events will only be generated if no other event occurred during the timer
interval and might be dropped if other events occur.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 timerRate

Value specifying the interval for cyclic timer events generated by a port.
If 0 is passed, no cyclic timer events will be generated.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Bus Independent Commands Manual

- 30 - Version 7.5 © Vector Informatik GmbH

3.1.11 xlSetTimerRateAndChannel

XLstatus xlSetTimerRateAndChannel (
Syntax

 XLportHandle portHandle
 XLaccess *timerChannelMask
 unsigned long *timerRate)

Description This call sets up the rate for the port‘s cyclic timer events. The resolution is 10µs
(timerRate of 1 means 10 µs, a timerRate of 10 means 100 µs). The minimum
and maximum timerRate values depend on the hardware. If a value is outside of
the allowable range the limit value is used. Only deterministic values according to the
following list can be used. Other values will be rounded to the next faster timerrate.

- CAN/LIN
 Minimum timerRate : 250 µs
 Discrete timerRate values : 250 µs + x * 250 µs

- FlexRay (USB)
 Minimum timerRate : 250 µs
 Discrete timerRate values : 250 µs + x * 50 µs

- FlexRay (PCI)
 Minimum timerRate : 100 µs
 Discrete timerRate values : 100 µs + x * 50 µs

Info: Timer events will only be generated if no other event occurs during the timer
interval. Timer events might be dropped if other events occur.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 timerChannelMask

A mask specifying the channels, at which the timer events may be generated.
Please note that the driver selects the best suitable (accurate) channel of the
entire channel mask for timer event generation. This selected channel is returned
in timerChannelMask.

 timerRate

Value specifying the interval for cyclic timer events generated by a port. If 0 is
passed, no cyclic timer events will be generated.

Return Value Returns an error code.
If the function call succeeds, XL_SUCCESS will be returned. Otherwise XL_ERROR,
XL_ERR_INVALID_HANDLE or XL_ERR_INVALID_ACCESS.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 31 -

3.1.12 xlResetClock

XLstatus xlResetClock (XLportHandle portHandle) Syntax

Description Resets the time stamps for the specified port.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.13 xlSetNotification

XLstatus xlSetNotification (
Syntax

 XLportHandle portHandle,
 XLhandle *handle,
 int queueLevel)

Description The function returns the notification handle. It notifies when messages are available in
the receive queue. The handle is closed when unloading the library.

The queueLevel specifies the number of messages that triggers the event. Note
that the event is triggered only once when the queueLevel is reached. An
application should read all available messages by xlReceive to be sure to re-enable
the event.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 queueLevel
Queue level that triggers this event. For LIN it is fixed to ‘1’.

 handle

Pointer to a WIN32 event handle.
Output Parameters

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Setup the notification for a CAN application

Xlhandle h;
xlStatus = xlSetNotification (gPortHandle, &h, 1);

// Wait for event
while (WaitForSingleObject(h,1000) == WAIT_TIMEOUT);
do {
 // Get the event
 xlStatus = xlReceive(gPortHandle, 1, &pEvent);
} while (xlErr == 0);

Bus Independent Commands Manual

- 32 - Version 7.5 © Vector Informatik GmbH

3.1.14 xlFlushReceiveQueue

Syntax XLstatus xlFlushReceiveQueue (XLportHandle portHandle)

Description The function flushes the port‘s receive queue.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.15 xlGetReceiveQueueLevel

Syntax

XLstatus xlGetReceiveQueueLevel (
 XLportHandle portHandle,
 int *level)

Description The function returns the count of events in the port’s receive queue.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

Output Parameters level
Pointer to an int where the actual count of events in the receive queue is
returned.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.16 xlActivateChannel

Syntax

XLstatus xlActivateChannel(
 XLportHandle portHandle,
 XLaccess &accessMask,
 unsigned int busType,
 unsigned int flags)

Description Goes ‚on bus’ for the selected port and channels. (Starts the measurement). At this
point the user can transmit and receive messages on the bus. For LIN the
master/slave must be parameterized before.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be activated.

 busType
Bus type that should be activated.
e.g.
- use XL_BUS_TYPE_LIN to initialize LIN

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 33 -

- use XL_BUS_TYPE_CAN to initialize CAN, …)

 flags
Additional flags for activating the channels.
- XL_ACTIVATE_RESET_CLOCK
reset the internal clock after activating the channel.

- XL_ACTIVATE_NONE

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Channel Activation
xlStatus = xlActivateChannel(m_vPortHandle,
 &m_vChannelMask[MASTER],
 XL_BUS_TYPE_LIN,
 XL_ACTIVATE_RESET_CLOCK);

3.1.17 xlReceive

XLstatus xlReceive (
Syntax

 XLportHandle portHandle,
 unsigned int *pEventCount,
 XLevent *pEventList)

Description Reads the received events from the message queue. An application should read all
available messages to be sure to re-enable the event.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 pEventCount

Pointer to an event counter. On input, the variable must be set to the size (in
messages) of the received buffer. On output, the variable contains the number of
received messages.

Input/
Output Parameters

 pEventList
Pointer to the application allocated receive event buffer. The buffer must be big
enough to hold the requested messages (pEventCount).

Return Value XL_ERR_QUEUE_IS_EMPTY: No event is available.
Zero means success. See section Error Codes on page 85 for further details.

Example: Read each message from the message queue
 XLhandle h;

unsigned int msgsrx = 1;
XLevent xlEvent;

vErr = xlSetNotification(XLportHandle, &h, 1);

// Wait for event
while (g_RXThreadRun) {
 WaitForSingleObject(g_hMsgEvent,10);

Bus Independent Commands Manual

- 34 - Version 7.5 © Vector Informatik GmbH

 msgsrx = RECEIVE_EVENT_SIZE;

 xlStatus = xlReceive(g_XLportHandle, &msgsrx, &xlEvent);
 while (!xlStatus) {
 if (xlStatus != XL_ERR_QUEUE_IS_EMPTY) {
 printf("%s\n", xlGetEventString(&xlEvent));
 msgsrx = 1;
 xlStatus = xlReceive(g_XLportHandle,
 &msgsrx,
 &xlEvent);
 }
 }
 }

3.1.18 xlGetEventString

XLstringType xlGetEventString (XLevent *ev) Syntax

Description Returns a textual description of the given event.

 ev
Points to the event.

Input Parameters

Return Value Text string.

Example: Received string

RX_MSG c=4,t=794034375, id=0004 l=8, 0000000000000000 TX tid=CC
Explanation:
RX_MSG : RX message
c=4 : on channel 4
t=794034375 : with a timestamp of 794034375ns,
id=004 : the ID=4
l=8 : a DLC of 8 and
0000000000000: D0 to D7 are set to 0.
TX tid=CC : TX flag, message was transmitted successfully by the CAN
controller.

3.1.19 xlGetErrorString

const char *xlGetErrorString (XLstatus err) Syntax

Description Returns a textual description of the given error.

 err Input Parameters
Error code. See section Error Codes on page 85 for further details.

Return Value Error code as plain text string.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 35 -

3.1.20 xlGetSyncTime

Syntax

XLstatus xlGetSyncTime (
 XlportHandle portHandle,
 XLuint64 *time)

Description Current high precision PC time comparable with the synchronized time stamps (1 ns
resolution)

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

Output Parameters time
Points to variable, where the sync time is received.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.21 xlGenerateSyncPulse

Syntax XLstatus xlGenerateSyncPulse (

 XlportHandle portHandle,
 XLaccess accessMask)

Description This function generates a sync pulse at the hardware sync line (hardware party line)
with a maximum frequency of 10 Hz. It is only allowed to generate a sync pulse at
one channel and at one device at the same time.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels at which the sync pulse
shall be generated.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.22 xlPopupHwConfig

Syntax

XLstatus xlPopupHwConfig (
 char *callSign,
 unsigned int waitForFinish)

Description Call this function to pop up the Vector Hardware Config tool.

Input Parameters callSign
Reserved type.

 waitForFinish
Timeout (for the application) to wait for the user entry within Vector Hardware
Config in milliseconds.

Bus Independent Commands Manual

- 36 - Version 7.5 © Vector Informatik GmbH

- ’0’: The application does not wait.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.23 xlDeactivateChannel

Syntax

XLstatus xlDeactivateChannel (
 XlportHandle portHandle,
 XLaccess accessMask)

Description The selected channels go off the bus. The channels are deactivated if there is no
further port that activates the channels.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be deactivated.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.1.24 xlGetLicenseInfo

Syntax

XLstatus xlGetLicenseInfo (
 XLaccess channelMask,
 XLlicenseInfo *pLicInfoArray,
 unsigned int licInfoArraySize)

Description This function returns an array (type of XLlicenseInfo) with all available licenses
from the selected Vector device. The order of available licenses is always the same,
since each element with its index is dedicated to a license. Whether a license is
available or not can be checked within the related structure.

Input Parameters channelMask
The channel mask of the Vector device containing the licenses.

 licInfoArraySize
Size of the array.

Output Parameters pLicInfoArray
Pointer to array to be returned.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 37 -

typedef struct s_xl_license_info { Syntax
 unsigned char bAvailable;
 char licName[65];
} XLlicenseInfo;

 bAvailable
0: license not available
1: license available

Parameters

 licName
Name of the license.

Example: Retrieving licenses, check if available

XLstatus xlStatus;
char licAvail[2048];
char strtmp[512];

XLlicenseInfo licenseArray[1024];
unsigned int licArraySize = 1024;

xlStatus = xlGetLicenseInfo(m_xlChannelMask m_xlCh,
 licenseArray,
 licArraySize);

if (xlStatus == XL_SUCCESS) {
 strcpy(licAvail, "Licenses found:\n\n");
 for (unsigned int i = 0; i < licArraySize; i++) {

 if (licenseArray[i].bAvailable) {

 sprintf(strtmp,
 "ID 0x%03x: %s\n", i,
 licenseArray[i].licName);

 if ((strlen(licAvail) + strlen(strtmp)) <
 sizeof(licAvail)) {

 strcat(licAvail, strtmp);

 }

 else {

 sprintf(licAvail, "Error: String size too small!");
 xlStatus = XL_ERROR;

 }

 }

 }

 }

 else {

 sprintf(licAvail, "Error: %d", xlStatus);

 }

CAN Commands Manual

- 38 - Version 7.5 © Vector Informatik GmbH

3.2 CAN Commands

3.2.1 xlCanSetChannelOutput

Xlstatus xlCanSetChannelOutput (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned char mode)

Description If mode is XL_OUTPUT_MODE_SILENT the CAN chip will not generate any
acknowledges when a CAN message is received. It’s not possible to transmit
messages, but they can be received in the silent mode. Normal mode is the default
mode if this function is not called.

Info: To call this function the port must have init access (see xlOpenPort) for the
specified channels, and the channels must be deactivated.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 mode
Specifies the output mode of the CAN chip.
- XL_OUTPUT_MODE_SILENT
No acknowledge will be generated on receive (silent mode).
Note: With driver version V5.5 the silent mode has been changed. Now the TX
pin is switched off. (The ‘SJA1000 silent mode’ is not used anymore).

- XL_OUTPUT_MODE_NORMAL
Acknowledge (normal mode)

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.2.2 xlCanSetChannelMode

Xlstatus xlCanSetChannelMode (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 int tx,
 int txrq)

Description This sets whether the caller will get a TX and/or a TXRQ receipt for transmitted
messages (for CAN channels defined by accessMask). The default is TXRQ
deactivated and TX activated.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 39 -

 tx
A flag specifying whether the channel should generate receipts when a message
is transmitted by the CAN chip.
- ‘1’ = generate receipts
- ‘0’ = deactivated.
Sets the XL_CAN_MSG_FLAG_TX_COMPLETED flag.

 txrq
A flag specifying whether the channel should generate receipts when a message
is ready for transmission by the CAN chip.
- ‘1’ = generate receipts,
- ‘0’ = deactivated.
Sets the XL_CAN_MSG_FLAG_TX_REQUEST flag.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.2.3 xlCanSetReceiveMode

Syntax

XLstatus xlCanSetReceiveMode (
 XLportHandle Port,
 unsigned char ErrorFrame,
 unsigned char ChipState)

Description Suppresses error frames and chipstate events with ‘1’, but allows those with ‘0’.
Error frames and chipstate events are allowed by default.

Input Parameters Port
The port handle retrieved by xlOpenPort.

 ErrorFrame
Suppresses error frames.

 ChipState
Suppresses chipstate events.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.2.4 xlCanSetChannelTransceiver

Syntax XLstatus xlCanSetChannelTransceiver(

 XLportHandle portHandle,
 XLaccess accessMask,
 int type,
 int lineMod
 int resNet)

Description This function is used to set the transceiver modes. The possible transceiver modes
depend on the transceiver type connected to the hardware. The port must have init
access (see xlOpenPort) to the channels.

CAN Commands Manual

- 40 - Version 7.5 © Vector Informatik GmbH

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 Type
- Lowspeed (252/1053/1054)
XL_TRANSCEIVER_TYPE_CAN_252

- Highspeed (1041 and 1041opto)
XL_TRANSCEIVER_TYPE_CAN_1041
XL_TRANSCEIVER_TYPE_CAN_1041_opto

- Single Wire (AU5790)
XL_TRANSCEIVER_TYPE_CAN_SWC
XL_TRANSCEIVER_TYPE_CAN_SWC_OPTO
XL_TRANSCEIVER_TYPE_CAN_SWC_PROTO

 lineMod
- Lowspeed (252/1053/1054)
XL_TRANSCEIVER_LINEMODE_SLEEP
Puts CANcab into sleep mode

XL_TRANSCEIVER_LINEMODE_NORMAL
Enables normal operation

- Highspeed (1041 and 1041opto)
XL_TRANSCEIVER_LINEMODE_SLEEP
Puts CANcab into sleep mode

XL_TRANSCEIVER_LINEMODE_NORMAL
Enables normal operation

- Single Wire (AU5790)
XL_TRANSCEIVER_LINEMODE_NORMAL
Enables normal operation

XL_TRANSCEIVER_LINEMODE_SWC_SLEEP
Switches to sleep mode

XL_TRANSCEIVER_LINEMODE_SWC_NORMAL
Switches to normal operation

XL_TRANSCEIVER_LINEMODE_SWC_FAST
Switches transceiver to fast mode

 resNet
Reserved. Should always be set to zero!

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 41 -

3.2.5 xlCanSetChannelParams

XLstatus xlCanSetChannelParams (Syntax
 XLportHandle portHandle,
 XLaccess accessMask,
 XLchipParams *pChipParams)

Description This initializes the channels defined by accessMask with the given parameters. In
order to call this function the port must have init access (see xlOpenPort), and the
selected channels must be deactivated.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 pChipParams
Pointer to an array of chip parameters. See below for further details.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

The structure for the chip parameters is defined as follows: XLchipParams

struct { Syntax
 unsigned long bitRate;
 unsigned char sjw;
 unsigned char tseg1;
 unsigned char tseg2;
 unsigned char sam;
};

 bitRate
This value specifies the real bit rate. (e.g. 125000)

Parameters

 sjw
Bus timing value sample jump width.

 tseg1
Bus timing value tseg1.

 tseg2
Bus timing value tseg2.

 sam
Bus timing value sam. Samples may be 1 or 3.

Info: For more information about the bit timing of the CAN controller please refer to
some of the CAN literature or CAN controller data sheets.

CAN Commands Manual

- 42 - Version 7.5 © Vector Informatik GmbH

Example: Calculation of baudrate

Baudrate = f/(2*presc*(1+tseg1+tseg2))
presc : CAN-Prescaler [1..64] (will be conformed autom.)
sjw : CAN-Synchronization-Jump-Width [1..4]
tseg1 : CAN-Time-Segment-1 [1..16]
tseg2 : CAN-Time-Segment-2 [1..8]
sam : CAN-Sample-Mode 1:3 Sample
f : crystal frequency is 16 MHz

 Presc sjw tseg1 tseg2 sam Baudrate
 1 1 4 3 1 1 MBd
 1 1 8 7 1 500 kBd
 4 4 12 7 3 100 kBd
 32 4 16 8 3 10 kBd

3.2.6 xlCanSetChannelParamsC200

XLstatus xlCanSetChannelParamsC200 (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned char btr0,
 unsigned char btr1)

Description This initializes the channels defined by accessMask with the given parameters. In
order to call this function the port must have init access (see xlOpenPort), and the
selected channels must be deactivated.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 btr0
BTRO value for a C200 or 527 compatible controllers.

 btr1
BTR1 value for a C200 or 527 compatible controllers.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 43 -

3.2.7 xlCanSetChannelBitrate

XLstatus xlCanSetChannelBitrate (Syntax
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned long bitrate)

Description xlCanSetChannelBitrate provides a simple way to specify the bit rate. The
sample point is about 65%.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask

The access mask must contain the mask of channels to be accessed.

 bitrate
Bit rate in BPS. May be in the range 15000 … 1000000.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.2.8 xlCanSetChannelAcceptance

XLstatus xlCanSetChannelAcceptance(
Syntax

 XlportHandle portHandle,
 XLaccess accessMask,
 unsigned long code,
 unsigned long mask,
 unsigned int idRange)

Description A filter lets pass messages. Different ports may have different filters for a channel. If
the CAN hardware cannot implement the filter, the driver virtualizes filtering.

Accept if ((id ^ code) & mask) == 0)

Info: The acceptance filters are open after an xlOpenPort by default.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 code
The acceptance code for id filtering.

 mask
The acceptance mask for id filtering, bit = 1 means relevant

 idRange
To distinguish whether the filter is for standard or extended identifiers
- XL_CAN_STD
- XL_CAN_EXT

CAN Commands Manual

- 44 - Version 7.5 © Vector Informatik GmbH

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Several acceptance filter settings

 IDs mask code idRange
 Std. Open for all IDs 0x000 0x000 XL_CAN_STD
 Open for Id 1, ID=0x001 0x7FF 0x001 XL_CAN_STD
 Close for all IDs 0xFFF 0xFFF XL_CAN_STD
 Ext. Open for all IDs 0x000 0x000 XL_CAN_EXT
 Open for Id 1, ID=0x80000001 0x1FFFFFFF 0x001 XL_CAN_EXT
 Close for all IDs 0xFFFFFFFF 0xFFFFFFFF XL_CAN_EXT

Example: Open filter for all standard message IDs
xlStatus = xlCanSetChannelAcceptance(m_XLportHandle,
 m_xlChannelMask,
 0x000,
 0x000,
 XL_CAN_EXT);

Example: Set acceptance filter for several IDs (formula)
code = id(1)
mask = 0XFFF
loop over id(1) ... id(n)
mask = (!(id(n)&mask)xor(code&mask))& mask

 Binary General rule
 ID = 6 (0x006) 0110 -
 ID = 4 (0x004) 0100 -

1101 Compare the Ids at each bit position. If they are different, mask
at this bit position must be ‘0’

 Mask

0110 Take one Id (it does not matter which one) Code

3.2.9 xlCanAddAcceptanceRange

XLstatus xlCanAddAcceptanceRange(Syntax
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned long first_id,
 unsigned long last_id)

Description The filters are opened (all messages are received) by default. xlCanAddAccep-
tanceRange opens the filters for the specified range of standard IDs. The function
can be called several times to open multiple ID windows. Different ports may have
different filters for a channel. If the CAN hardware cannot implement the filter, the
driver virtualizes filtering.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 45 -

Info: The acceptance filters are open after xlOpenPort by default. This function is
for standard IDs only. For selecting an ID range maybe the filters must be closed
before.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 first_id
First ID to pass acceptance filter.

 last_id
Last ID to pass acceptance filter.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Receive ID between 10…17 and 22…33

xlStatus = xlCanAddAcceptanceRange(XLportHandle,
 xlChannelMask,
 10,
 17);

xlStatus = xlCanAddAcceptanceRange(XLportHandle,
 xlChannelMask,
 22,
 33);

3.2.10 xlCanRemoveAcceptanceRange

XLstatus xlCanRemoveAcceptanceRange(Syntax
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned long first_id,
 unsigned long last_id)

Description The specified IDs will not pass the acceptance filter. xlCanRemove-
AcceptanceRange is only implemented for standard identifier. The range of the
acceptance filter can be removed several times. Different ports may have different
filters for a channel. If the CAN hardware cannot implement the filter, the driver
virtualizes filtering.

Info: The acceptance filters are open after xlOpenPort by default. This function is
for standard IDs only.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

CAN Commands Manual

- 46 - Version 7.5 © Vector Informatik GmbH

 first_id

First ID to remove.

 last_id
Last ID to remove.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Remove range between 10…13 and 27…30

xlStatus = xlCanRemoveAcceptanceRange(XLportHandle,
 xlChannelMask,
 10,
 13);

xlStatus = xlCanRemoveAcceptanceRange(XLportHandle,
 xlChannelMask,
 27,
 30)

3.2.11 xlCanResetAcceptance

XLstatus xlCanResetAcceptance (Syntax
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int idRange)

Description Resets the acceptance filter. The selected filters (depending on the idRange flag)
are open.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 idRange
In order to distinguish whether the filter is reset for standard or extended
identifiers.
- XL_CAN_STD
 Opens the filter for standard message IDs

- XL_CAN_EXT
Opens the filter for extended message IDs

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Open filter for all messages with extended IDs

xlStatus = xlCanResetAcceptance(XLportHandle,
 xlChannelMask,
 XL_CAN_EXT);

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 47 -

3.2.12 xlCanRequestChipState

Syntax

XLstatus xlCanRequestChipState (

 XlportHandle portHandle,
 XLaccess accessMask)

Description This function requests a CAN controller chipstate for all selected channels. For each
channel a XL_CHIPSTATE event can be received by calling xlReceive().

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.2.13 xlCanTransmit

Syntax

XLstatus xlCanTransmit (
 XLportHandle portHandle,
 Xlaccess accessMask,
 unsigned int *messageCount,
 void *pMessages)

Description The function transmits CAN messages on the selected channels. It is possible to
transmit more messages with one xlCanTransmit call (see the following example).

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 messageCount
Points to the amount of messages to be transmitted or returns the number of
transmitted messages.

 pMessages
Points to a user buffer with messages to be transmitted.
At least the buffer must have the size of messageCount.

Return Value Returns an error code.
Zero means success. XL_ERR_QUEUE_IS_FULL means the channel‘s transmit-
queue is full. See section Error Codes on page 85 for further details.

CAN Commands Manual

- 48 - Version 7.5 © Vector Informatik GmbH

Example: Transmit 100 CAN messages with the ID = 4
XLevent xlEvent[100];
int nCount = 100;
for (i=0; i<nCount;i++) {
 xlEvent[i].tag = XL_TRANSMIT_MSG;
 xlEvent[i].tagData.msg.id = 0x04;
 xlEvent[i].tagData.msg.flags = 0;
 xlEvent[i].tagData.msg.data[0] = 1;
 xlEvent[i].tagData.msg.data[1] = 2;
 xlEvent[i].tagData.msg.data[2] = 3;
 xlEvent[i].tagData.msg.data[3] = 4;
 xlEvent[i].tagData.msg.data[4] = 5;
 xlEvent[i].tagData.msg.data[5] = 6;
 xlEvent[i].tagData.msg.data[6] = 7;
 xlEvent[i].tagData.msg.data[7] = 8;
 xlEvent[i].tagData.msg.dlc = 8;
}

xlStatus = xlCanTransmit(portHandle, accessMask,
 &nCount, xlEvent);

3.2.14 xlCanFlushTransmitQueue

XLstatus xlCanFlushTransmitQueue (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask)

Description The function flushes the transmit queues of the selected channels.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 accessMask
Mask specifying which channels shall be used with this port.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 49 -

3.3 LIN Commands

3.3.1 xlLinSetChannelParams

XLstatus xlLinSetChannelParams (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 XLlinStatPar statPar)

Description Sets the channel parameters like baud rate, master, slave.

Info: The function opens all acceptance filters for LIN. In other words, the application
receives XL_LIN_MSG events for all LIN IDs. Resets all DLC’s (xlLinSetDLC)!

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 statPar
Defines the mode of the LIN channel and the baud rate.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

XLlinStatPar The following structure is used in function xlLinSetChannelParams:

typedef struct {
 unsigned int LINMode;
 int baudrate;
 unsigned int LINVersion;
 unsigned int reserved;
} XLlinStatPar;

 LINMode
Sets the channel mode.
- XL_LIN_MASTER
Set channel to a LIN master.

- XL_LIN_SLAVE
Set channel to LIN slave.

Parameters

 baudrate
Set the baud rate. e.g. 9600, 19200, ...
The baud rate range is 200 … 30.000 Bd. Please note that the functionality of the
XL API is guaranteed for 200 … 20.000 Bd according to the LIN specification.
Higher values should be used with care.

 LINVersion
- XL_LIN_VERSION_1_3
Use LIN 1.3 protocol

LIN Commands Manual

- 50 - Version 7.5 © Vector Informatik GmbH

- XL_LIN_VERSION_2_0
Use LIN 2.0 protocol

 reserved
For future use.

Example: Channel setup as a SLAVE to 9k6 and LIN 1.3

XLlinStatPar xlStatPar;
xlStatPar.LINMode = XL_LIN_SLAVE;
xlStatPar.baud rate = 9600;

// use LIN 1.3
xlStatPar.LINVersion = XL_LIN_VERSION_1_3;

xlStatus = xlLinSetChannelParams(m_XLportHandle,
 m_xlChannelMask[SLAVE],
 xlStatPar);

3.3.2 xlLinSetDLC

XLstatus xlLinSetDLC(Syntax
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned char DLC[60]
)

Description Defines the data length for all requested messages. This is needed for the LIN master
(and recommended for LIN slave) and must be called before activating a channel.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 DLC
Specifies the length of all LIN messages (0…63). The value can be 0…8 for a
valid DLC.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Set DLC for LIN message with ID 0x04 to 8 and for all other IDS to
undefined.

unsigned char DLC[64];
for (int i=0;i<64;i++) DLC[i] = XL_LIN_UNDEFINED_DLC;
DLC[4] = 8;

xlStatus = xlLinSetDLC(m_XLportHandle, m_xlChannelMask[MASTER],
DLC);

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 51 -

3.3.3 xlLinSetChecksum

XLstatus xlLinSetChecksum (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned char checksum[60])

Description This function is only for a LIN 2.0 node and must be called before activating a
channel. The checksum calculation can be changed here from the classic to
enhanced model for the LIN IDs 0..59. The LIN ID 60..63 range is fixed to the classic
model and cannot be changed. The classic model is always set for all IDs by default.
There are no changes when it is called for a LIN 1.3 node.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 checksum
- XL_LIN_CHECKSUM_CLASSIC
Sets to classic calculation (use only data bytes).

- XL_LIN_CHECKSUM_ENHANCED
Sets to enhanced calculation (use data bytes including the id field).

- XL_LIN_CHECKSUM_UNDEFINED
Sets to undefined calculation.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Set the checksum for a LIN message with the ID 0x04 to “enhanced” and
for all other IDs to “undefined”.

unsigned char checksum[60];
for (int i = 0; i < 60; i++)
 checksum[i] = XL_LIN_CHECKSUM_UNDEFINED;
checksum[4] = XL_LIN_CHECKSUM_ENHANCED;
xlStatus =
xlLinSetChecksum(m_XLportHandle,
 m_xlChannelMask[MASTER],
 checksum);

LIN Commands Manual

- 52 - Version 7.5 © Vector Informatik GmbH

3.3.4 xlLinSetSlave

XLstatus xlLinSetSlave (Syntax
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned char linId,
 unsigned char data[8],
 unsigned char dlc,
 unsigned short checksum)

Sets up a LIN slave. This function must be called before activating a channel and for
each slave ID separately. After activating the channel it is only possible to change the
data, dlc and checksum but not the linID.

Description

This function is also used to setup a slave task within a master node. If the function is
not called but activated the channel is only listening.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 linID
LIN ID on which the slave transmits a response.

 data
Contains the data bytes.

 dlc
Defines the dlc for the LIN message.

 checksum
Defines the checksum (it is also possible to set a faulty checksum). If the API
should calculate the checksum use the following defines:
- XL_LIN_CALC_CHECKSUM
Use the classic checksum calculation (only databytes)

- XL_LIN_CALC_CHECKSUM_ENHANCED
Use the enhanced checksum calculation (databytes and id field)

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Setup a LIN slave for ID=0x04

unsigned char data[8];
unsigned char id = 0x04;
unsigned char dlc = 8;

data[0] = databyte;
data[1] = 0x00;
data[2] = 0x00;
data[3] = 0x00;
data[4] = 0x00;
data[5] = 0x00;
data[6] = 0x00;
data[7] = 0x00;

xlStatus = xlLinSetSlave(m_XLportHandle,

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 53 -

 m_xlChannelMask[SLAVE],
 id,
 data,
 dlc,
 XL_LIN_CALC_CHECKSUM);

3.3.5 xlLinSwitchSlave

Syntax

XLstatus xlLinSwitchSlave (
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned char linId,
 unsigned int mode)

Description The function can switch on/off a LIN slave during measurement.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 linID
Contains the master request LIN ID.

 mode
- XL_LIN_SLAVE_ON
Switch on the LIN slave.

- XL_LIN_SLAVE_OFF
Switch off the LIN slave.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.3.6 xlLinSendRequest

Syntax

XLstatus xlLinSendRequest (
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned char linId,
 unsigned int flags)

Description Sends a master LIN request to the slave(s).
After a successfully transmission the port, which sends the message, gets a
XL_LIN_MSG event with a set XL_LIN_MSGFLAG_TX flag.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 linID
Contains the master request LIN ID.

LIN Commands Manual

- 54 - Version 7.5 © Vector Informatik GmbH

 flags
For future use. At the moment set to ‚0’.

Return Value Returns an error code.
Zero means success. Returns XL_ERR_INVALID_ACCESS if it is done on a LIN
slave. See section Error Codes on page 85 for further details.

3.3.7 xlLinWakeUp

Syntax

XLstatus xlLinWakeUp (
 XLportHandle portHandle,
 XLaccess accessMask)

Description Transmits a wake-up signal.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.3.8 xlLinSetSleepMode

Syntax XLstatus xlLinSetSleepMode (

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int flags,
 unsigned char linId)

Description Activates the sleep mode.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 flags
- XL_LIN_SET_SILENT
Sets hardware into sleep mode (transmits no ‘Sleep-Mode’ frame).

- XL_LIN_SET_WAKEUPID
Transmits the indicated linID at wakeup and set hardware into sleep mode. It is
only possible on a LIN master.

 linID
Defines the linID that is transmited at wake-up.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 55 -

3.4 Digital/Analog Input/Output Commands

3.4.1 xlDAIOSetAnalogParameters

XLstatus xlDAIOSetAnalogParameters (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int inputMask,
 unsigned int outputMask,
 unsigned int highRangeMask)

Description Configures the analog lines. All lines are set to input by default. The bit sequence to
access the physical pins on the D-SUB15 connector is as follows:

 AIO0 = 0001 (0x01)
 AIO1 = 0010 (0x02)
 AIO2 = 0100 (0x04)
 AIO3 = 1000 (0x08)

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 inputMask
Mask for lines to be configured as input. Generally the inverted value of the
output mask can be used.

 outputMask
Mask for lines to be configured as output. Generally the inverted value of the
input mask can be used.

 highRangeMask
Mask for lines that should use high range mask for input resolution.
- Low range 0 … 8.192V (3.1kHz)
- High range 0 … 32.768V (6.4kHz)
Line AIO0 and AIO1 supports both ranges, AIO2 and AIO3 high range only.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Setup the IOcab8444 with four analog lines and two different ranges

inputMask = 0x01(0b0001) analogLine1 ⇒ input
 analogLine2 ⇒ not input
 analogLine3 ⇒ not input
 analogLine4 ⇒ not input

outputMask = 0x0E(0b1110) analogLine1 ⇒ not output
 analogLine2 ⇒ output
 analogLine3 ⇒ output
 analogLine4 ⇒ output

highRangeMask = 0x01(0b0001) analogLine1 ⇒ high range
 analogLine2 ⇒ low range
 analogLine3 ⇒ high range (always)

Digital/Analog Input/Output Commands Manual

- 56 - Version 7.5 © Vector Informatik GmbH

 analogLine4 ⇒ high range (always)

3.4.2 xlDAIOSetAnalogOutput

Syntax

XLstatus xlDAIOSetAnalogOutput (

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int analogLine1,
 unsigned int analogLine2,
 unsigned int analogLine3,
 unsigned int analogLine4)

Description Sets analog output line to voltage level as requested (specified in millivolts).
Optionally, the flag XL_DAIO_IGNORE_CHANNEL can be used not to change line’s
current level.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 analogLine1
Voltage level for AIO0.

 analogLine2
Voltage level for AIO1.

 analogLine3
Voltage level for AIO2.

 analogLine4
Voltage level for AIO3.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.4.3 xlDAIOSetAnalogTrigger

Syntax

XLstatus xlDAIOSetAnalogTrigger (
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int triggerMask,
 unsigned int triggerLevel,
 unsigned int triggerEventMode)

Description Configures analog trigger functionality.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 triggerMask
Line to be used as trigger input. Currently the analog trigger is only supported by
line AIO3 of the IOcab 8444opto (mask = 0b1000).

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 57 -

 triggerLevel
Voltage level (in millivolts) for the trigger.

 triggerEventMode
One of following options can be set:
- XL_DAIO_TRIGGER_MODE_ANALOG_ASCENDING
Triggers when descending voltage level falls under triggerLevel

- XL_DAIO_TRIGGER_MODE_ANALOG_DESCENDING
Triggers when descending voltage level goes over triggerLevel

- XL_DAIO_TRIGGER_MODE_ANALOG
Triggers when the voltage level falls under or goes over triggerLevel

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

3.4.4 xlDAIOSetDigitalParameters

Syntax

XLstatus xlDAIOSetDigitalParameters (
 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int inputMask,
 unsigned int outputMask)

Description Configures the digital lines. All lines are set to input by default. The bit sequence to
access the physical pins on the D-SUB15 connector is as follows:

 DAIO0: 0b00000001
 DAIO1: 0b00000010
 DAIO2: 0b00000100
 DAIO3: 0b00001000
 DAIO4: 0b00010000
 DAIO5: 0b00100000
 DAIO6: 0b01000000
 DAIO7: 0b10000000

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

 inputMask
Mask for lines to be configured as input. Generally the inverted value of the
output mask will be used.

 outputMask
Mask for lines to be configured as output. A set output line affects always a
defined second digital line.

Digital/Analog Input/Output Commands Manual

- 58 - Version 7.5 © Vector Informatik GmbH

Caution: The digital outputs consist internally of electronic switches (photo MOS
relays) and need always two digital lines of the IOcab 8444opto: a general output line
and a line for external supply. In other words: When the switch is closed (by
software), the applied voltage can be measured at the second output line, otherwise
not. The line pairs are defined as follows: DIO0/DIO1, DIO2/DIO3, DIO4/DIO5 and
DIO6/DIO7.

Return Value Returns an error code.
Zero means success See section Error Codes on page 85 for further details.

3.4.5 xlDAIOSetDigitalOutput

XLstatus xlDAIOSetDigitalOutput (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int outputMask,
 unsigned int valuePattern)

Description Sets digital output line to desired logical level.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 outputMask
Switches to be changed:
- DAIO0/DAIO1: 0b0001
- DAIO2/DAIO3: 0b0010
- DAIO4/DAIO5: 0b0100
- DAIO6/DAIO7: 0b1000

 valuePattern
Mask specifying the switch state for digital output.
- DAIO0/DAIO1: 0b000x
- DAIO2/DAIO3: 0b00x0
- DAIO4/DAIO5: 0b0x00
- DAIO6/DAIO7: 0bx000
x = 0 (switch opened) or 1 (switch closed)

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Setup the IOcab8444

outputMask = 0x05(0b0101)Update digital output DIO0/DIO1 and DIO4/DIO5
valuePattern = 0x01(0b00

01)Close relay DIO0/DIO1

 Open relay DIO4/DIO5

Manual User API Description

© Vector Informatik GmbH Version 7.5 - 59 -

3.4.6 xlDAIOSetPWMOutput

XLstatus xlDAIOSetPWMOutput (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int frequency,
 unsigned int value)

Description Changes PWM output to defined frequency and value.

 portHandle
The port handle retrieved by xlOpenPort.

Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 frequency
Set PWM frequency to specified value in Hertz.
Allowed values: 40…500 Hertz and 2.4kHz…100kHz

 Value
Ratio for pulse high pulse low times with resolution of 0.01 percent.
Allowed values: 0 (100% pulse low)…10000 (100% pulse high).

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Example: Setup the IOcab8444

frequency = 2500 PWM frequency is now 2500 Hz
value = 2500 PWM ratio is now 25%
 (75% pulse low, 25% pulse high)

3.4.7 xlDAIOSetMeasurementFrequency

XLstatus xlDAIOSetMeasurementFrequency (
Syntax

 XLportHandle portHandle,
 XLaccess accessMask,
 unsigned int measurementInterval)

Description Sets the measurement frequency. xlEvents will be automatically triggered, which can
be received by xlReceive. For manual trigger see chapter
xlDAIORequestMeasurement on page 60.

 portHandle

The port handle retrieved by xlOpenPort.
Input Parameters

 accessMask
The access mask must contain the mask of channels to be accessed.

 measurementInterval
Measurement frequency in ms.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Digital/Analog Input/Output Commands Manual

- 60 - Version 7.5 © Vector Informatik GmbH

3.4.8 xlDAIORequestMeasurement

Syntax

XLstatus xlDAIORequestMeasurement (
 XLportHandle portHandle,
 XLaccess accessMask)

Description Forces manual measurement of DAIO values.

Input Parameters portHandle
The port handle retrieved by xlOpenPort.

 accessMask
The access mask must contain the mask of channels to be accessed.

Return Value Returns an error code.
Zero means success. See section Error Codes on page 85 for further details.

Manual Event Structures

© Vector Informatik GmbH Version 7.5 - 61 -

4 Event Structures

In this chapter you find the following information:

4.1 Basic Events page 62
 XL Event
 XL Tag Data

4.2 CAN Event page 64
 XL CAN Message

4.3 Chip State Event page 65
 XL Chip State

4.4 Timer Events page 66
 Timer
 LIN Events
 LIN Message API
 LIN Message
 LIN Error Message
 LIN Sync Error
 LIN No Answer
 LIN Wake Up
 LIN Sleep
 LIN CRC Info

4.6 Sync Pulse Events page 69
 Sync Pulse

4.7 DAIO Events page 70
 DAIO Data

4.8 Transceiver Events page 71
 Transceiver

Basic Events Manual

- 62 - Version 7.5 © Vector Informatik GmbH

4.1 Basic Events

4.1.1 XL Event

Syntax struct s_xl_event {

 XLeventTag tag;
 unsigned char chanIndex;
 unsigned short transId;
 unsigned short portHandle;
 unsigned short reserved;
 XLuint64 timeStamp;
 union s_xl_tag_data tagData;
};

Input Parameters tag
Common and CAN events
- XL_RECEIVE_MSG
- XL_CHIP_STATE
- XL_TRANSCEIVER
- XL_TIMER
- XL_TRANSMIT_MSG
- XL_SYNC_PULSE

Special LIN events
- XL_LIN_MSG
- XL_LIN_ERRMSG
- XL_LIN_SYNCERR
- XL_LIN_NOANS
- XL_LIN_WAKEUP
- XL_LIN_SLEEP
- XL_LIN_CRCINFO

Special DAIO events
- XL_RECEIVE_DAIO_DATA

 chanIndex
Channel on which the event occurs.

 transId
Internal use only.

 portHandle
Internal use only.

 reserved
Reserved for future use.

 timestamp
Actual timestamp generated by the hardware with 8μs resolution.
Value is in nanoseconds.

 tagData
Union for the different events.

Manual Event Structures

© Vector Informatik GmbH Version 7.5 - 63 -

4.1.2 XL Tag Data

Syntax union s_xl_tag_data {

 struct s_xl_can_msg msg;
 struct s_xl_chip_state chipState;
 union s_xl_lin_msg_api linMsgApi;
 struct s_xl_sync_pulse syncPulse;
 struct s_xl_daio_data daioData;
 struct s_xl_transceiver transceiver;
};

Input Parameters msg
Union for all CAN events.

 chipState
Structure for all CHIPSTATE events.

 linMsgApi
Union for all LIN events.

 syncPulse
 Structure for all SYNC_PULSE events
 daioData

Structure for all DAIO data
 transceiver

Structure for all TRANSCEIVER events.

CAN Event Manual

- 64 - Version 7.5 © Vector Informatik GmbH

4.2 CAN Event

4.2.1 XL CAN Message

Syntax struct s_xl_can_msg {

 unsigned long id;
 unsigned short flags;
 unsigned short dlc;
 XLuint64 res1;
 unsigned char data [MAX_MSG_LEN];
 XLuint64 res2;
};

Tag XL_RECEIVE_MSG/XL_TRANSMIT_MSG (see chapter XL Event, tag on page 62)

Parameters id
The CAN identifier of the message. If the MSB of the id is set, it is an extended
identifier (see XL_CAN_EXT_MSG_ID).

 flags
- XL_CAN_MSG_FLAG_ERROR_FRAME
The event is an error frame

- XL_CAN_MSG_FLAG_OVERRUN
An overrun occurred in the CAN controller

- XL_CAN_MSG_FLAG_REMOTE_FRAME
The event is a remote frame

- XL_CAN_MSG_FLAG_TX_COMPLETED
Notification for successful message transmission

- XL_CAN_MSG_FLAG_TX_REQUEST
Request notification for message transmission

- XL_CAN_MSG_FLAG_NERR
The transceiver reported a error while the message was received.

- XL_CAN_MSG_FLAG_WAKEUP
High voltage message for Single Wire.
To flush the queue and transmit a high voltage message
make an „OR“ combination between the XL_CAN_MSG_FLAG_WAKEUP and
XL_CAN_MSG_FLAG_OVERRUN.

 dlc
Length of the data in bytes.

 res1
Reserved for future use.

 data
Array containing the data.

 res2
Reserved for future use.

Manual Event Structures

© Vector Informatik GmbH Version 7.5 - 65 -

4.3 Chip State Event

4.3.1 XL Chip State

Syntax struct s_xl_chip_state {

 unsigned char busStatus;
 unsigned char txErrorCounter;
 unsigned char rxErrorCounter;
};

Tag XL_CHIP_STATE (see chapter XL Event, tag on page 62)

Description This event occurs after calling xlCanRequestChipState.

Parameters busStatus
Returns the state of the CAN controller. The following codes are possible:
- XL_CHIPSTAT_BUSOFF
The bus is offline.

- XL_CHIPSTAT_ERROR_PASSIVE
One of the error counters has reached the error level.

- XL_CHIPSTAT_ERROR_WARNING
One of the error counters has reached the warning level.

XL_CHIPSTAT_ERROR_ACTIVE
The bus is online.

 txErrorCounter
Error counter for the transmit section of the CAN controller.

 rxErrorCounter
Error counter for the receive section of the CAN controller.

Timer Events Manual

- 66 - Version 7.5 © Vector Informatik GmbH

4.4 Timer Events

4.4.1 Timer

Tag XL_TIMER (see chapter XL Event, tag on page 62)

Description A timer event can be generated cyclically by the driver to keep the application alive.
The timer event occurs after init of the timer with xlSetTimerRate.

4.5 LIN Events

4.5.1 LIN Message API

Syntax union s_xl_lin_msg_api {

 struct s_xl_lin_msg linMsg;
 struct s_xl_lin_no_ans linNoAns;
 struct s_xl_lin_wake_up linWakeUp;
 struct s_xl_lin_sleep linSleep;
 struct s_xl_lin_crc_info linCRCinfo;
};

Parameters linMsg
Structure for the LIN messages.

 linNoAns
Structure for the LIN message that gets no answer.

 linWakeUp
Structure for the wake events.

 linSleep
Structure for the sleep events.

 linCRCino
Structure for the CRC info events.

4.5.2 LIN Message

Syntax

struct s_xl_lin_msg {
 unsigned char id;
 unsigned char dlc;
 unsigned short flags;
 unsigned char data[8];
 unsigned char crc;
};

Tag XL_LIN_MSG (see chapter XL Event, tag on page 62)

Input Parameters id
Received LIN message ID.

 dlc
The DLC of the received LIN message.

Manual Event Structures

© Vector Informatik GmbH Version 7.5 - 67 -

 flags
- XL_LIN_MSGFLAG_TX
The LIN message was sent by the same LIN channel.

- XL_LIN_MSGFLAG_CRCERROR
LIN CRC error.

 data
Content of the message.

 crc
Checksum.

4.5.3 LIN Error Message

Tag XL_LIN_ERRMSG (see chapter XL Event, tag on page 62)

4.5.4 LIN Sync Error

Tag XL_LIN_SYNC_ERR (see chapter XL Event, tag on page 62)

Description Notifies an error in analyzing the sync field.

4.5.5 LIN No Answer

Syntax

struct s_lin_NoAns {
 unsigned char id;
}

Tag XL_LIN_NOANS (see chapter XL Event, tag on page 62)

Description If a LIN master request gets no slave response a linNoAns event is received.

Parameters id
The LIN ID on which was the master request.

4.5.6 LIN Wake Up

Syntax

struct s_lin_WakeUp {
 unsigned char flag;
}

Tag XL_LIN_WAKEUP (see chapter XL Event, tag on page 62)

Description When a channel wakes up (comes out of the sleep mode) a linWakeUp event is
received.

Parameters flag
If the wake-up signal comes from the internal hardware, the flag is set to
XL_LIN_WAKUP_INTERNAL otherwise it is not set (external wake-up).

LIN Events Manual

- 68 - Version 7.5 © Vector Informatik GmbH

4.5.7 LIN Sleep

Syntax

struct s_lin_Sleep {
 unsigned char flag;
}

Tag XL_LIN_SLEEP (see chapter XL Event, tag on page 62)

Description For this event there can be different reasons:
 After xlActivatechannel a linSleep event is received (only for a LIN

application).
 After xlLinWakeUp (e.g. an internal wake-up).
 After receiving a LIN message the master goes back into sleep mode.

Parameters flag
The flags describe if the hardware comes from the sleep-mode or is set into the
sleep mode.
- XL_LIN_SET_SLEEPMODE
The hardware is set into sleep-mode.

- XL_LIN_COMESFROM_SLEEPMODE
The hardware wakes up.

- XL_LIN_STAYALIVE
There is no change in the hardware state.

4.5.8 LIN CRC Info

Syntax

struct s_xl_lin_crc_info {
 unsigned char id;
 unsigned char flags;
};

Tag XL_LIN_CRCINFO (see chapter XL Event, tag on page 62)

Description This event is only used if the LIN protocol is >= 2.0.

If a LIN >= 2.0 node is initialized and the function xlLinSetChecksum is not called
(and no checksum model is defined) the hardware detects the according checksum
model by itself. The event occurs only one time for the according LIN ID.

Parameters id
Contains the id for the according checksum model.

 flag
- XL_LIN_CHECKSUM_CLASSIC
Classic checksum model detected.

- XL_LIN_CHECKSUM_ENHANCED
Enhanced checksum model detected.

Manual Event Structures

© Vector Informatik GmbH Version 7.5 - 69 -

4.6 Sync Pulse Events

4.6.1 Sync Pulse

Syntax struct s_xl_sync_pulse {

 unsigned char pulseCode;
 XLuint64 time;
};

Tag XL_SYNC_PULSE (see chapter XL Event, tag on page 62)

Description

Input Parameters pusleCode
- XL_SYNC_PULSE_EXTERNAL
The sync event comes from an external device

- XL_SYNC_PULSE_OUR
The sync pulse event occurs after a xlGenerateSyncPulse.

- XL_SYNC_PULSE_OUR_SHARED
The sync pulse comes from the same hardware but from another channel.

 time
Recalculated high resolution card timestamp with 1ns resolution.

DAIO Events Manual

- 70 - Version 7.5 © Vector Informatik GmbH

4.7 DAIO Events

4.7.1 DAIO Data

Syntax struct s_xl_daio_data {

 unsigned short flags;
 unsigned int timestamp_correction;
 unsigned char mask_digital;
 unsigned char value_digital;
 unsigned char mask_analog;
 unsigned char reserved0;
 unsigned short value_analog[4];
 unsigned int pwm_frequency;
 unsigned short pwm_value;
 unsigned int reserved1;
 unsigned int reserved2;
};

Tag XL_DAIO_DATA (see chapter XL Event, tag on page 62)

Input Parameters flags
Flags describing valid fields in the event structure:
- XL_DAIO_DATA_GET
Structure contains valid received data

- XL_DAIO_DATA_VALUE_DIGITAL
Digital values are valid

- XL_DAIO_DATA_VALUE_ANALOG
Analog values are valid

- XL_DAIO_DATA_PWM
PWM values are valid.

 timestamp_correction
Value to correct timestamp in this event (in order to get real time of
measurement). In order to get real time of measurement substract this value from
event’s timestamp. Value is in nanoseconds.

 mask_digital
Mask of digital lines that contains valid value in this event.

 value_digital
Value of digital lines specified by mask_digital parameter.

 mask_analog
Mask of analog lines that contains valid value in this event.

 reserved
Reserved for future use.

 value_analog
Array of measured analog values for analog lines specified by mask_analog
parameter. Value is in millivolts.

 pwm_frequency
Measured capture frequency in Hz.

 pwm_value
Measured capture value in percent.

Manual Event Structures

© Vector Informatik GmbH Version 7.5 - 71 -

 Reserved1
Reserved for future use.

 Reserved2
Reserved for future use.

4.8 Transceiver Events

4.8.1 Transceiver

Syntax struct s_xl_transceiver {

 unsigned char event_reason;
 unsigned char is_present;
};

Tag XL_TRANSCEIVER (see chapter XL Event, tag on page 62)

Parameters event_reason
Reason for occurred event.

 is_present
Always valid transceiver.

Manual Examples

© Vector Informatik GmbH Version 7.5 - 73 -

5 Examples

In this chapter you find the following information:

5.1 Overview page 74

5.2 xlCANdemo page 75

5.3 xlCANcontrol page 77

5.4 xlLINExample page 79

5.5 xlDAIOexample page 81

5.6 xlDAIOdemo page 84

Overview Manual

- 74 - Version 7.5 © Vector Informatik GmbH

5.1 Overview

In order to show the functionality of the XL Family Driver Library, there are a couple of
examples included: Available examples

 xlCANdemo
Demonstrates the CAN implementation.

 xlCANcontrol
An example GUI applicaton for CAN.

 xlLINExample
Shows how to setup a LIN master/slave.

 xlDAIOexamples
Detailed example for IOcab 8444opto.

 xlDAIOdemo
Demo program for the IOcab 8444opto.

 .NET examples
See XL Driver Library - .NET Wrapper Description.pdf for detailed
information.

Caution: THE INCLUDED EXAMPLES ARE PROVIDED “AS-IS”. NO LIABILITY OR
RESPONSIBILITY FOR ANY ERRORS OR DAMAGES.

Manual Examples

© Vector Informatik GmbH Version 7.5 - 75 -

5.2 xlCANdemo

xlCANdemo is the replacement for the old CANdemo. It shows the basic handling in
a CAN application. The program contains a command line interface:

Description

xlCANdemo <Baudrate> <ApplicationName> <Identifier>

Keyboard commands The running application can be controlled by a few keyboard commands:

Key Command
 Transmit a message [t]
 Transmit a message burst [B]
 Transmit a remote message [M]
 Request chip state [G]
 Start/Stop [S]
 Reset clock [R]
 Select channel (up) [+]
 Select channel (down) [-]
 Select transmit Id (up) [i]
 Select transmit Id (down) [I]
 Toggle extended/standard Id [X]
 Toggle output mode [O]
 Toggle timer [A]
 Toggle logging to screen [V]
 Show hardware configuration [P]
 Help [H]
 Exit [ESC]

The source file xlCANdemo.c contains all needed functions: Source code

demoInitDriver() Function

Function Description This function opens the driver and reads the actual hardware configuration.
(xlGetHardwareConfig). A valid channelMask is calculated (we use only
channels with CANcabs or CANpiggy’s) and one port is opened afterwards.

xlCANdemo Manual

- 76 - Version 7.5 © Vector Informatik GmbH

Function demoCreateRxThread()

Function Description In order to read the driver message queue a thread is generated.

Manual Examples

© Vector Informatik GmbH Version 7.5 - 77 -

5.3 xlCANcontrol

This Visual Studio project xlCANcontrol shows the basic CAN handling with the XL
Driver Library and a simple graphical user interface. The application needs two
CANcabs/CANpiggies to run. The program searches a Vector device on the first start,
which supports CAN and assigns two channels within Vector Hardware Config
(which can surely be changed to other device channels). The found device is
displayed in the Hardware box. After pressing the [Go OnBus] button, both CAN
channels are initialized with the selected baud rate.

Description

In order to transmit a CAN message, setup the desired ID (standard or extended),
DLC, databytes and press the [Send] button. The transmitted CAN message is
displayed in the window (there is a TX complete message from the transmit channel,
and the received message on the second channel per default).

During the measurement the acceptance filter range can be changed with the [Set
filter] or [Reset filter] button.

Class overview The example has the following class structure:
 CaboutDlg

About box.
 CXLCANcontrolApp

Main MFC class ⇒ xlCANcontrol.cpp
 CXLCANcontrolDlg

The ‘main’ dialog box ⇒ xlCANcontrollDlg.cpp
 CCANFunctions

Contains all functions for the LIN access ⇒ xlCANFunctions.cpp

xlCANcontrol Manual

- 78 - Version 7.5 © Vector Informatik GmbH

Function CANInit

Function Description This function is called on application start to get the valid channelmasks (access
masks). Afterwards one port is opened for the two channels and a thread is created to
readout the message queue is started.

Function CANGoOnBus

Function Description After pressing the [Go OnBus] button, the CAN parameters are set and both
channels are activated.

Function CANGoOffBus

Function Description After pressing the [Go OffBus] button, the channels will be deactivated.

Function CANSend

Function Description Transmits the CAN message with xlCANtransmit.

Function CANResetFilter

Function Description Resets (open) the acceptance filter.

Function CANSetFilter

Function Description Sets the acceptance filter range. It is needed to close the acceptance filter for every
ID before.

Function canGetChannelMask

Function Description This function looks for assigned channels in Vector Hardware Conf with
xlGetApplConfig. If there is no application registered, xlCANcontrol searchs for
available CAN channels and assigns them in Vector Hardware Conf with
xlSetApplConfig. The function fails, if there are no valid channels found.

Function canInit

Function Description Opens one port with both channels (xlOpenPort).

Function canCreateRxThread

Manual Examples

© Vector Informatik GmbH Version 7.5 - 79 -

Function Description In order to readout the driver message queue, the application uses a thread
(RxThread). An event is created and set up with xlSetNotification to notify the
thread.

5.4 xlLINExample

Description xlLINExample is a Microsoft Visual C++ project that demonstrates the basic use of
the LIN API. It sets a LIN master including a LIN slave at one channel, and if available
a LIN slave to the second channel. The definition can be made within the Vector
Hardware Configuration tool. If xlLINExample starts the first time, it sets CH01 to a
LIN master including a slave, and if possible CH02 to a LIN slave.

After the successfully LIN initialization the LIN master can transmit some requests.

Class overview The xlLINExample has the following class structure:
 CaboutDlg

About box. ⇒ AboutDlg.cpp
 CLINExampleApp

Main MFC class ⇒ xlLINExample.cpp
 CLINExampleDlg

The ‘main’ dialog box ⇒ xlLINExampleDlg.cpp
 CLINFunctions

Contains all functions for the LIN access ⇒ xlLINFunctions.cpp

LINGetDevice Function

In order to get the channel mask, use linGetChannelMask to read all hardware
parameters. xlGetApplConfig checks whether the application has already been
assigned. If not, a new entry with xlSetApplConfig is created.

Function Description

xlLINExample Manual

- 80 - Version 7.5 © Vector Informatik GmbH

Function LINInit

Function Description LINInit opens one port for one channel, or if available two channels (CH1 and
CH2). The first channel will be initialized as LIN master including a LIN slave (id=4)
the other a LIN slave (id=5). After a successfully xlOpenPort, a RX thread is
created. Use xlLinSetChannelParams in order to initialize the channels (like
master/slave and the baud rate). It is also recommended to set up the LIN dlc with
xlLinSetDLC.

Function linInitMaster

Function Description In order to use the LIN bus, it is necessary to define the specific DLC for each LIN ID.
⇒ xlLinSetDLC. This must be done only for a LIN master and before you go
‘onBus’.

Function linInitSlave

Function Description Use xlLinSetSlave to set up slave. Before you go ‘onBus’ it is needed to define
the LIN slave ID that cannot be changed after xlActivateChanne. All other
parameters like the data values or the DLC can be varied.

Function LINSendMasterReq

Function Description After the LIN network is specified and the master/slaves are ‘onBus’, the master can
transmit master requests with xlLinSendRequest.

Function LINClose

Function Description When all is done, the port is closed with xlClosePort.

Manual Examples

© Vector Informatik GmbH Version 7.5 - 81 -

5.5 xlDAIOexample

Description This example demonstrates the setup of a single IOcab 8444opto for a test, and the
way of accessing the inputs and outputs for cyclically measurement.

Pin definitions The following pins of the IOcab 8444opto are used in this example:
 AIO0 (pin 14): Analog output.
 AIO1 (pin 7): Analog input.
 AIO2 (pin 15): Analog input.
 AIO3 (pin 8): Analog input.
 DIO0 (pin 1): Digital output (shared electronic switch with DIO1).
 DIO1 (pin 9): Digital output (supplied by DIO0, when switch is closed).
 DIO2 (pin 2): Digital input.
 DIO3 (pin 10): Digital input.

software
controlled

switch

DIO0

DIO1
software

controlled
switch

DIO0

DIO1

14 AIO0 Analog Output

7 AIO1 Analog Input

1 DIO0 Digital Output

9 DIO1 Digital Output

2 DIO2 Digital Input

8 AIO3 Analog Input

10 DIO3 Digital Input

15 AIO2 Analog Input

analog
test setupVext

digital
test setup

Setup

Info: The internal switch between DIO0 (supplied by AIO0) and DIO1 is
closed/opened with xlDAIOSetDigitalOutput. If the switch is closed, the applied
voltage at DIO0 can be measured at DIO1.

xlDAIOexample Manual

- 82 - Version 7.5 © Vector Informatik GmbH

Keyboard commands When the application is running, there is a couple of keyboard commands:

 Key Command
 ENTER Toggle digital output.
 x Closes application.

Example: Display output of xlDAIOexample.
AIO0 : 4032mV
AIO1 : 0mV
AIO2 : 0mV
AIO3 : 0mV
Switch selected : DIO0/DI01
Switch states : OPEN
Digital Port : DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1 DIO0 val
 0 0 0 0 0 0 0 1 (1)

 “AIO0” displays 4032mV, since it is set to output with maximum output level. Explanation
 “AIO1” displays 0mV, since there is no applied voltage at this input.
 “AIO2” displays 0mV, since there is no applied voltage at this input.
 “AIO3” displays 0mV, since there is no applied voltage at this input.
 ”Switch selected” displays DIO0/DIO1 (first switch)
 ”Switch states” displays the state of switch between DIO0/DIO1
 “Digital Port” shows the single states of DIO7…DIO0:

- DIO0: displays ‘1’ (always ‘1’, due the voltage supply)
- DIO1: displays ‘0’ (switch is open, so voltage at DIO0 is not passed through)
- DIO2: displays ‘0’ (output of DIO1)
- DIO3: displays ‘0’ (output of DIO1)
- DIO4: displays ‘0’ (n.c.)
- DIO5: displays ‘0’ (n.c.)
- DIO6: displays ‘0’ (n.c.)
- DIO7: displays ‘0’ (n.c.)

Example: Display output of xlDAIOexample.
AIO0 : 4032mV
AIO1 : 0mV
AIO2 : 4032mV
AIO3 : 0mV
Switch selected : DIO0/DI01
Switch state : CLOSED
Digital Port : DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1 DIO0 val
 0 0 0 0 1 1 1 1 (f)

Manual Examples

© Vector Informatik GmbH Version 7.5 - 83 -

 “AIO0” displays 4032mV, since it is set to output with maximum output level. Explanation
 “AIO1” displays 0mV, since there is no applied voltage at this input.
 “AIO0” displays 4032mV, since it is connected to AIO0.
 “AIO3” displays 0mV, since there is no applied voltage at this input.
 ”Switch selected” displays DIO0/DIO1 (first switch)

”Switch state” displays the state of switch between DIO0/DIO1
“Digital Port” shows the single states of DIO7…DIO0:
- DIO0: displays ‘1’ (always ‘1’, due the voltage supply)
- DIO1: displays ‘1’ (switch is open, so voltage at DIO0 is not passed through)
- DIO2: displays ‘1’ (output of DIO1)
- DIO3: displays ‘1’ (output of DIO1)
- DIO4: displays ‘0’ (n.c.)
- DIO5: displays ‘0’ (n.c.)
- DIO6: displays ‘0’ (n.c.)
- DIO7: displays ‘0’ (n.c.)

Info: If you try to connect DIO1 (when output is ‘1’) to one of the inputs DIO4…DIO7,
you will notice no changes on the screen. The digital output is supplied by the IOcab
8444opto itself, where the maximum output is 4.096V. Due to different thresholds, the
inputs DIO4…DIO7 needs higher voltages (>=4.7V) to toggle from ‘0’ to ‘1’.

Source code The source file xlDAIOexample.c contains all needed functions:

InitIOcab Function

Function Description This function opens the driver and reads the current hardware configuration.
(xlGetHardwareConfig). A valid channelMask is calculated and one port is
opened afterwards.

ToggleSwitch Function

Function Description This function toggles all switches and passes through the applied voltage at DIO0 to
DIO1.

CloseExample Function

Function Description Closes the driver and the application.

xlDAIOdemo Manual

- 84 - Version 7.5 © Vector Informatik GmbH

5.6 xlDAIOdemo

Description In order to see the configuration of a digital/analog IO application, a Visual Studio
Project, called ‘xlDAIOdemo’, is included in the XL API setup. To run the application,
one connected IOcab 8444opto is needed.

The xlDIAOExample has the following class structure: Class overview

 CXlDAIOdemoApp
Main MFC class ⇒ xlDAIOdemo.cpp

 CXlDAIOdemoDlg
Handles the window dialog messages and control the IOcab ⇒
xlDAIOdemoDlg.cpp

 ReceiveThread
Thread to handle the DAIO events.

Manual Error Codes

© Vector Informatik GmbH Version 7.5 - 85 -

6 Error Codes

In this chapter you find the following information:

6.1 Error Code Table page 86

Error Codes Manual

- 86 - Version 7.5 © Vector Informatik GmbH

6.1 Error Code Table

XLStatus error codes In this section all error codes are described which may be returned by a driver call.

 Code Error Description

 0 XL_SUCCESS The driver call was successful.

 10 XL_ERR_QUEUE_IS_EMPTY The receive queue of the port is empty.
The user can proceed normally.

 11 XL_ERR_QUEUE_IS_FULL The transmit queue of a channel is full.
The transmit event will be lost.

 12 XL_ERR_TX_NOT_POSSIBLE The hardware is busy and not able to
transmit an event at once.

 14 XL_ERR_NO_LICENSE Only used in the MOST option to differ
between the free- and ‘MOST Analyses’
library.

 101 XL_ERR_WRONG_PARAMETER At least one parameter passed to the
driver was wrong or invalid.

 111 XL_ERR_INVALID_CHAN_INDEX The driver attempted to access a
channel with an invalid index.

 112 XL_ERR_INVALID_ACCESS The user made a call to a port specifying
channel(s) for which he had not
declared access at opening of the port.

 113 XL_ERR_PORT_IS_OFFLINE The user called a port function whose
execution must be online, but the port is
offline.

 116 XL_ERR_CHAN_IS_ONLINE The user called a function whose
desired channels must be offline, but at
least one channel is online.

 117 XL_ERR_NOT_IMPLEMENTED The user called a feature which is not
implemented.

 118 XL_ERR_INVALID_PORT The driver attempted to access a port by
an invalid pointer or index.

 121 XL_ERR_CMD_TIMEOUT The timeout condition occurred while
waiting for the response event of a
command.

 129 XL_ERR_HW_NOT_PRESENT The hardware is not present (or could
not be found) at a channel. This may
occur with removable hardware or faulty
hardware.

 201 XL_ERR_CANNOT_OPEN_DRIVER The attempt to load or open the driver
failed. Reason could be the driver file
which cannot be found, is already
loaded or part of a previously unloaded
driver.

 202 XL_ERR_WRONG_BUS_TYPE The user called a function with the
wrong bus type. (e.g. try to activate a
LIN channel for CAN).

 255 XL_ERROR An unspecified error occurred.

Manual Migration Guide

© Vector Informatik GmbH Version 7.5 - 87 -

7 Migration Guide

In this chapter you find the following information:

7.1 Overview page 88
 Bus Independent Function Calls
 CAN Dependent Function Calls
 LIN Dependent Function Calls

7.2 Changed Calling Conventions page 90

Migration Guide Manual

- 88 - Version 7.5 © Vector Informatik GmbH

7.1 Overview

Migration from
CAN Driver to
XL Driver Library

In order to update or migrate applications, which are based on the CAN Driver library
to the XL Driver Library have a look on the following table:

7.1.1 Bus Independent Function Calls

No changes The following functions have the same calling convention:

 Old
Bus independent function calls

XL
Bus independent function calls

 ncdOpenDriver xlOpenDriver
 ncdCloseDriver xlCloseDriver
 ncdGetChannelIndex xlGetChannelIndex
 ncdGetChannelMask xlGetChannelMask
 ncdSetTimerRate xlSetTimerRate
 ncdResetClock xlResetClock
 ncdFlushReceiveQueue xlFlushReceiveQueue
 ncdGetReceiveQueueLevel xlGetReceiveQueueLevel
 ncdGetErrorString xlGetErrorString
 ncdDeactivateChannel xlDeactivateChannel
 ncdClosePort xlClosePort

Changes The following functions have not the same calling convention:

 Old
Bus independent function calls

XL
Bus independent function calls

 ncdGetDriverConfig xlGetDriverConfig
 ncdOpenPort xlOpenPort
 ncdActivateChannel xlActivateChannel
 ncdReceive1/ncdReceive xlReceive
 ncdGetApplConfig xlGetApplConfig
 ncdSetApplConfig xlSetApplConfig
 ncdGetEventString xlGetEventString
 n.a. xlGetSyncTime
 n.a. xlGenerateSyncPulse
 n.a. xlPopupHwConfig
 ncdGetState removed

Manual Migration Guide

© Vector Informatik GmbH Version 7.5 - 89 -

7.1.2 CAN Dependent Function Calls

No changes The following functions have the same calling convention:

 Old
CAN functions

XL
CAN functions

 ncdSetChannelOutput xlCanSetChannelOutput
 ncdSetChannelMode xlCanSetChannelMode
 ncdSetReceiveMode xlCanSetReceiveMode
 ncdSetChannelTransceiver xlCanSetChannelTransceiver
 ncdSetChannelParams xlCanSetChannelParams
 ncdSetChannelParamsC200 xlCanSetChannelParamsC200
 ncdSetChannelBitrate xlCanSetChannelBitrate
 ncdSetChannelAcceptance xlCanSetChannelAcceptance
 ncdAddAcceptanceRange xlCanAddAcceptanceRange
 ncdRemoveAcceptanceRange xlCanRemoveAcceptanceRange
 ncdResetAcceptance xlCanResetAcceptance
 ncdRequestChipState xlCanRequestChipState
 ncdFlushTransmitQueue xlCanFlushTransmitQueue
 ncdSetChannelAcceptance xlCanSetChannelAcceptance
 ncdTransmit xlCanTransmit

Changes The following functions have not the same calling convention:

 Old
CAN functions

XL
CAN functions

 ncdSetChannelAcceptance xlCanSetChannelAcceptance
 ncdTransmit xlCanTransmit

7.1.3 LIN Dependent Function Calls

New LIN functions The following functions have been added:

 CAN Library XLDriver Library
 n.a. xlLinSetChannelParams
 n.a. xlLinSetDLC
 n.a. xlLinSetSlave
 n.a. xlLinSetSleepMode
 n.a. xlLinWakeUp
 n.a. xlLinSendRequest
 n.a. xlLinSetSlave
 n.a. xlDAIOSetMeasurementFrequency
 n.a. xlDAIOSetAnalogParameters
 n.a. xlDAIOSetAnalogOutput
 n.a. xlDAIOSetAnalogTrigger
 n.a. xlDAIOSetDigitalParameters
 n.a. xlDAIOSetDigitalOutput
 n.a. xlDAIOSetPWMOutput
 n.a. xlDAIORequestMeasurement

Migration Guide Manual

- 90 - Version 7.5 © Vector Informatik GmbH

7.2 Changed Calling Conventions

New conventions New calling conventions in the XL Driver Library:

 Function name Changes

 xlGetApplConfig Parameter changed from int to unsigned int.
 Bus type parameter added (XL_BUSTYPE_CAN

e.g.)

 xlSetApplConfig Parameter changed from int to unsigned int.
 Bus type parameter added (XL_BUSTYPE_CAN

e.g.)

 xlGetDriverConfig Structure for return value changed. (It is not
needed to malloc/alloc the structure size any
more depending on the founded channels).

 xlOpenPort Init Mask value removed ⇒ Now it is passed in
the ‘permissionMask’

 Interface version flag added
 Bus type parameter added.
 CAN: All acceptance filter are open!

 xlSetNotification Notification data type changed from ‘unsigned
long’ to a windows handle (To avoid the type
casts).

 Now the function returns the event handle so it is
not necessary to create an event before.

 xlActivateChannel Bus type parameter added.
 Additional flags (e.g. to reset the clock after

activating the channel)

 xlReceive Receive event structure changed.
 Event counter added.

 xlGetEventString Event type changed.

 xlCanSetChannelAcceptance No structure for the code/mask needed any
more.

 The ID range can be changed with a separate
flag.

 xlCanTransmit Message event type changed.
 Possible to transmit more messages with one

function call.

Manual Appendix A: Address Table

© Vector Informatik GmbH Version 7.5 - 91 -

8 Appendix A: Address Table

Vector Informatik GmbH Vector Informatik GmbH
Ingersheimer Str. 24
70499 Stuttgart
Germany
Phone : +49 711 80670-0
Fax : +49 711 80670-111
info@de.vector.com
http://www.vector-informatik.com

Vector CANtech, Inc. Vector CANtech, Inc.
Suite 550
39500 Orchard Hill Place
Novi, Mi 48375
USA
Phone : +1 248 449 9290
Fax : +1 248 449 9704
info@us.vector.com
http://www.vector-cantech.com

Vector Japan Co., Ltd. Vector Japan Co., Ltd.
Seafort Square Center Bld. 18F
2-3-12, Higashi-shinagawa, Shinagawa-ku
140-0002 Tokyo
Japan
Phone : +81 3 5769 7800
Fax : +81 3 5769 6975
info@jp.vector.com
http://www.vector-japan.co.jp

Vector France SAS Vector France SAS
168, Boulevard Camélinat
92240 Malakoff
France
Phone : +33 1 4231 4000
Fax : +33 1 4231 4009
info@fr.vector.com
http://www.vector-france.com

VecScan AB VecScan AB
Theres Svenssons Gata 9
41755 Göteborg
Sweden
Phone : +46 31 764 7600
Fax : +46 31 764 7619
info@se.vector.com
http://www.vecscan.com

Appendix A: Address Table Manual

- 92 - Version 7.5 © Vector Informatik GmbH

Vector Korea IT Inc. Vector Korea IT Inc.
Daerung Post Tower III, 508
182-4 Guro-dong, Guro-gu
Seoul 152-790
Republic of Korea
Phone : +82 2 2028 0600
Fax : +82 2 2028 0604
info@kr.vector.com
http://www.vector-korea.com/

Vector GB Limited Vector GB Limited
Rhodium, Central Boulevard
Blythe Valley Park
Solihull, Birmingham
West Midlands, B90 8AS
United Kingdom
Phone : +44 121 50681-50
Fax : +44 121 50681-66
info@uk.vector.com
http://www.vector-gb.co.uk

Get more Information!

Visit our Website for:

> News

> Products

> Demo Software

> Support

> Training Classes

> Addresses

www.vector.com

	1 Introduction
	1.1 About this User Manual
	1.1.1 Access Help and Conventions
	1.1.2 Certification
	1.1.3 Warranty
	1.1.4 Support
	1.1.5 Registered Trademarks

	2 XL Driver Library Overview
	2.1 General Information
	2.2 Features
	2.3 LIN Basics
	2.4 Flowcharts
	2.4.1 CAN Application
	2.4.2 LIN Application
	2.4.3 DAIO Application

	3 User API Description
	3.1 Bus Independent Commands
	3.1.1 xlOpenDriver
	3.1.2 xlCloseDriver
	3.1.3 xlGetApplConfig
	3.1.4 xlSetApplConfig
	3.1.5 xlGetDriverConfig
	3.1.6 xlGetChannelIndex
	3.1.7 xlGetChannelMask
	3.1.8 xlOpenPort
	3.1.9 xlClosePort
	3.1.10 xlSetTimerRate
	3.1.11 xlSetTimerRateAndChannel
	3.1.12 xlResetClock
	3.1.13 xlSetNotification
	3.1.14 xlFlushReceiveQueue
	3.1.15 xlGetReceiveQueueLevel
	3.1.16 xlActivateChannel
	3.1.17 xlReceive
	3.1.18 xlGetEventString
	3.1.19 xlGetErrorString
	3.1.20 xlGetSyncTime
	3.1.21 xlGenerateSyncPulse
	3.1.22 xlPopupHwConfig
	3.1.23 xlDeactivateChannel
	3.1.24 xlGetLicenseInfo

	3.2 CAN Commands
	3.2.1 xlCanSetChannelOutput
	3.2.2 xlCanSetChannelMode
	3.2.3 xlCanSetReceiveMode
	3.2.4 xlCanSetChannelTransceiver
	3.2.5 xlCanSetChannelParams
	3.2.6 xlCanSetChannelParamsC200
	3.2.7 xlCanSetChannelBitrate
	3.2.8 xlCanSetChannelAcceptance
	3.2.9 xlCanAddAcceptanceRange
	3.2.10 xlCanRemoveAcceptanceRange
	3.2.11 xlCanResetAcceptance
	3.2.12 xlCanRequestChipState
	3.2.13 xlCanTransmit
	3.2.14 xlCanFlushTransmitQueue

	3.3 LIN Commands
	3.3.1 xlLinSetChannelParams
	3.3.2 xlLinSetDLC
	3.3.3 xlLinSetChecksum
	3.3.4 xlLinSetSlave
	3.3.5 xlLinSwitchSlave
	3.3.6 xlLinSendRequest
	3.3.7 xlLinWakeUp
	3.3.8 xlLinSetSleepMode

	3.4 Digital/Analog Input/Output Commands
	3.4.1 xlDAIOSetAnalogParameters
	3.4.2 xlDAIOSetAnalogOutput
	3.4.3 xlDAIOSetAnalogTrigger
	3.4.4 xlDAIOSetDigitalParameters
	3.4.5 xlDAIOSetDigitalOutput
	3.4.6 xlDAIOSetPWMOutput
	3.4.7 xlDAIOSetMeasurementFrequency
	3.4.8 xlDAIORequestMeasurement

	4 Event Structures
	4.1 Basic Events
	4.1.1 XL Event
	4.1.2 XL Tag Data

	4.2 CAN Event
	4.2.1 XL CAN Message

	4.3 Chip State Event
	4.3.1 XL Chip State

	4.4 Timer Events
	4.4.1 Timer

	4.5 LIN Events
	4.5.1 LIN Message API
	4.5.2 LIN Message
	4.5.3 LIN Error Message
	4.5.4 LIN Sync Error
	4.5.5 LIN No Answer
	4.5.6 LIN Wake Up
	4.5.7 LIN Sleep
	4.5.8 LIN CRC Info

	4.6 Sync Pulse Events
	4.6.1 Sync Pulse

	4.7 DAIO Events
	4.7.1 DAIO Data

	4.8 Transceiver Events
	4.8.1 Transceiver

	5 Examples
	5.1 Overview
	5.2 xlCANdemo
	5.3 xlCANcontrol
	5.4 xlLINExample
	5.5 xlDAIOexample
	5.6 xlDAIOdemo

	6 Error Codes
	6.1 Error Code Table

	7 Migration Guide
	7.1 Overview
	7.1.1 Bus Independent Function Calls
	7.1.2 CAN Dependent Function Calls
	7.1.3 LIN Dependent Function Calls

	7.2 Changed Calling Conventions

	8 Appendix A: Address Table

