IS
m—

A
hilscher

COMPETENCE IN
COMMUNICATION

Device Driver Manual

Device Driver

Hilscher Gesellschaft fir Systemautomation mbH
Rheinstral3e 15

D-65795 Hattersheim

Germany

Tel. +49 (6190) 9907 - 0
Fax. +49 (6190) 9907 - 50

Sales: +49 (6190) 9907 - 0
Hotline and Support: +49 (6190) 9907 - 99

Sales email: sales@hilscher.com
Hotline and Support email: hotline@hilscher.com

Homepage: http://www.hilscher.com

List of revisions

Index |Date Version

Chapter

Revision

2]

30.09.97 1.200

all

- Now usable for diffenrent large dual-port memorys

- Handling for COM modules included

- New functions: DevExchangelOEXx(), DevExchangelOErr(),

DevReadWriteRAWData()

- Chapter Development Environmenet rewritten

DOS/Windows 3.xx

- Now usable for up to four communication boards

Device driver for Windows 95, Windows NT

- New parameter 'DPMSize’ included in the registry

- Now Installation, registration and configuration program

- Chapter program instructions added

- Data format of the registry parameters changed to DWORD, to simplify
the handling

- More detail explanations of error codes

- State error field modes in the function DevEchangelOErr changed from
0,1,2to0 2,3,4.

7105.11.97 1.210
8109.03.99 2.200
2.000
1.000

DOS/Windows 3.xx

Windows 9x/Windows NT

Windows CE device driver

- OS/2 description and support removed

- Chapter 5 reformatted and Windows CE description included

- Chapter 9 rewritten and informations about National Instrument CVI
LabWindows 4.1 and Borland Delphi included

©

20.02.01 2.220
3.003
1.000
3.100

DOS/Windows 3.xx

Windows 9x/Windows NT

Windows CE device driver

Windows 2000

- Windows 2000 description included

Although this softwar e has been developed with great care and intensively tested, Hilscher Gesellschaft fiir
Systemautomation mbH cannot guarantee the suitability of this software for any purpose not confirmed

by usin writing.

Guarantee claims shall be limited to the right to require rectification. Liability for any damages which
may have arisen from the use of this software or its documentation shall be limited to cases of intent.

Wereservetheright to modify our products and their specifications at any timein asfar asthis
contributes to technical progress. The version of the manual supplied with the softwar e applies.

Please notice that software and hardware names, used in this manual, are normally protected by trade-
marksor patents of the particulary companies.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Table of contents 3

11 [o 6
1L O aiNg Sy S BN ..ttt ittt ettt et e e e e e e 6
I T = 1 1 = 6
L3Termsfor thiSManUalc.iiniiii i e et 6

2 GEING SIATEA ..ottt e e 7

G 70910/ [1 1T 4 o] o 1 8
3L ADOUL the User INterfate ... e et e 8

3.1.1 Message Interface and Process Data lmageovniiiiiiii i et 8
3.1.2 The Protocol Dependent and Independent User Interface ...t 8

0 010 =0 1 [9
3.3 Message and Process Data COmMMUNICAHIONouiiii ittt e, 10
3.3.1 Message COMIMUNICAIIONttt et e e et et e e e et e et e et e e eeees 10
3.3.1.1 Sending (Putting) and Receiving (Getting) MeSSagesovvivviiiiiiiiniiiienannn. 12

3.3.210 Communication With @ProCeSS IMagec..viie e 13
3.3.2.1 Direct Data Transfer, DEVICE Controlledc.oviiiiii e 13

3.3.2.2 Buffered Data Transfer, DEVICE Controlledcoiiiiiiii i ieieeanns 14

3.3.2.3 Uncontrolled Direct Data Transferooiiiiiiiiii e 15

3.3.2.4 HOST Controlled, Buffered Data Transferoveiiiiiii i i 16
3.3.25HOST Controlled, Direct Data Transferooueiee e 17

BTG T @ 1= 4 1= T 18

3.4 The Software Structure on the Communication Boardsovvuiiiiiiiieiiii i iiaeineenn. 19
3.4.1 The Real-Time Operating Sy Sl emM ..ottt e e e ettt et ettt 19
O I =)0 oo I 1= S 20

4 DOS/Windows 3.XX FUNCLION Library e 21

g 0T (1 A 0 1 =1 23

4.1.1TOOIKIt FIl@ DESCIIPIION ...ttt ettt e et eees 24
4.2 Using With DOS @and WINAOWS 3.XX ... ve ettt et e et e e e e et e e e e 25
4.3 Using Visua BasiC 3.0/4.0 (16 DIt)oouirii e 25
4.4 Writing an own Driver or Library ... o 25
4.5 USING the SOUICE COURttt ettt e e et e e e 25

I I 4 S 1Y T B = 26

5.1 Windows 9x, Windows NT and WindowsS 2000ontinte e e e et 26
5.1.1 Contents for Windows 9x, Windows NT and Windows 2000oueiiiiiinineinennann. 28
5.1.2 Installation Of the DEVICE DIIVErttt 29

5.1.2.1 Standard Registry Entries Windows 9x and WindowsNTccociiiiiiiinnn... 29
5.1.2.2 Standard Registry EntrieSWindows 2000couiirniiiiiri i 30
5.1.2.3 Driver File Installationcouiiii e e 31
B, 2.4 DriVer Ut HiES .. e e 32
5.1.3 DEVIiCE DIIVEN SLAITUD ...ttt ettt ettt et e e et e 32
5.1.4 Configure the Windows 9x and Windows NT DriVercouiiiiiiiiiiiiii i 33

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Table of contents 4

5.1.5 Configure the Windows 2000 DIiVESouiiii et 34
5.1.6 SYSEM SHAIUD .ottt ettt e e e e 35

B 2 WINAOWS CE ..o e e et e e 36
5.2.1 Contentsfor WIindoWS CEoni i ettt ae e 37
5.2.2 Instalation of the DeViCe DIiVEr ... e e e 38
5.2.2.1 Standard PCMCIA RegiStry ENIESireiti e 39

5.2.2.2 Standard ISA RegiStry ENtriES . .oviii i e e 40

5.2.3 Configurethe DeVICE DIiVEr ... i e e et et 40

6 Programming INStTUCIONSttt ettt et e e ettt et ettt 41
6.1 Include the Interface APl in Your AppliCationoiiiiiiiii it et 41
6.2 0pen and Close the AriVEr ... o e e e 41
B.3 Writing an A PPl CaiON ... i e e e 42
6.3.1 Determine Device INfOrmationo.iiiiei e et 42
6.3.2 Message Based AppPliCatioN 44
6.3.3 Process Data Image Based AppliCationiiriiniii e 48

6.4 The DemO APPIICALIONttt e e e e e e e e 50
B.4. L C-EXAMPIE .ttt e e e 51
B.4.2 CHH-EXaMP e it e 53

7 The Application Programming Interface e 54
7.1 Differences of the Operating Sy St emMS ... it e e e e 55
7. L L FUNCHION PalramMeEterSttt ettt e e et e e e et et e e et e e e e e e e ae s 55

7. L2 TImMer RESOIULION ...ttt ettt et et e e e ettt et e e 55

A B L= Y@ o 1< 1 (Y7 1 (S 56
7.3 DBV OSED IV () oottt ittt ettt e e e e e e e 57
TADVGEBOAAINTO() .« ..ttt e 58
.5 DEVINITBOAIA() ...ttt ettt ettt et et e 59
T DEVEXITBOAIT() ... vveite ettt ettt e 60
7.7 DeVPUITASKPaIAMELE () ... ov ettt ettt ettt ettt e et et et 61
7.8 DeVGEITASKPArAMELEN() ..ottt e et ettt et et et e e e e e 62
T DBV RESEL() vttt ettt e e e e e 63
7.10 DEVSEIHOSISIAIE() .+« v v vttt ettt ettt ettt et e e e e e e 64
711 Message Transfer FUNCHIONS o e e e e et et 65
7.10.1 DEVGEIMBX SEBE() vt v et tte ettt ettt et e s 65
70102 DEVPUIMESSA0E() .+« v vttt ettt ettt ettt et e e e e 66
7.11.3 DEVGEIMESSAE() + .t vttt ettt et et e e et e e e e e e s 68
7012 DEVGEITASKSIAE() « v vttt ettt ettt ettt et e e e e e e 70
T L3 DEVGELINTO() v vttt ettt ettt et e e e 71
7.14 DevTriggerWatChadog()eeie ettt et e e e 74
7.15 Process Data Transfer FUNCLIONSiuiit ettt et et 75
7.15.1 DEVEXCNANGEIO() .. en ittt ettt et 76

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Table of contents S

7.15.2 DeVEXChanQel OEIT()ovii e e 77
7.15.3 DeVEXCNANGEIOEX() .. ev ettt ettt et 79
7.15.4 DEVREAASENADAA() ... vveveee et et ettt et e e 80

7.16 DeVREAAWTITEDPMRAW() ... v vt ettt et et ettt et e e e et et et et et 81
717 DEUDOWNIOBA() - . vttt ettt ettt et e 82
e =0 N0] = £ 83
8. LISt Of ErrOr NUMIDEIS ..ttt et e e e e e e 83
8.2 HIiNtSTO ErrOr NUMDEIS ... e et 85
O DEVE OPMIENE BNV T OIS ...ttt ittt et ettt e e e e e e 88
9.1 Microsoft Software DevelOpmeNnt TOOISoi.ii it ettt 20
9.1.1Visual BasiC3.0, 4.0 (16 Dit)oenieii ettt e 90

9.1.2 Microsoft Visual Basic 4.0, 5.0 (32 DIt)iuniiiiii e e 20

9.2 Borland Software Development TOOISoiue e 91
9.2.1 Borland C 5.0, Borland C-Builder V1.0 ..ot e e e 91

0.2.2 BOrland Dal PN ..o e 92

9.2.3 Nationa Instruments CVI LabWindoWS 4.1 ...ttt 93

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Introduction 6

1 Introduction

This manual describes the application programming interface (API) to our com-
munication boards. The interface is designed to give the user an easy accessto all
the communication board functionalities.

1.1 Operating systems

On DOS and Windows 3.xx systems, we are offering a C-function library or
DLL (Windows 3.xx). There is no device driver used to get access to the com-
munication boards.

« For Windows 9x, Windows NT and Windows 2000 we are using device
driver. These drivers are running in the kernel (Ring 0) of the operating sys-
tem. The communication between the application and the driver is done by a
DLL. ThisDLL can be staticaly or dynamically linked to the application.

1.2 Data transfer

On the communication boards, we distinguish between two types of datatransfer.

Thefirst oneisthe message oriented data transfer used by message oriented
protocols.

The second one is the data exchange with process images from 1/0O based
protocols.

1.3 Termsfor thisManual

DPM Dual-Port Memory thisisthe physical interface to all commu-
nication board (DPM is also used for PROFIBUS-DP
M aster).
CIF Communication | nterFace
COM COmmunication M odule
HOST Application on the PC or asimilar device
DEVICE Synonym for communication interfaces or communication
modules
+ RCS Realtime Communicating System, this is the name of the
operating system that runs on the communication boards
DLL Dynamic Link Library
- WDM Windows Driver M odel

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Introduction 7

2 Getting started

Dear developer
Yes, it isahuge manua and there are many many informations inside.

To help you that you find a quick and successful entry, please follow the
next steps:

First read chapter Communication that is very important.

Use the samplein chapter Programming Instructions and have success.

Understand how the driver works and how to use these functions.

Overview

Chapter Communication includes general definitions and describes the funda-
mentals about data transfers between an application and the communication
boards.

The features of the driver for Dos and Windows 3.xx is described in chapter
DOS/Windows 3.xx Function Library.

Chapter The Device Driver describes an overview, the installation and con-
figuration of the device driver for Windows 9x, Windows NT, Windows 2000
and Windows CE.

The important chapter Programming Instructions describes the basic func-
tionality of using the device driver and presents an example.

All functions of the device driver are explained in chapter The Application
Programming | nterface.

Chapter Error Numbers lists a detail description of the error numbers

Chapter Development Environments informs about the Microsoft and Bor-
land development tools.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 8

3 Communication

3.1 About the User Interface

3.1.1 Message | nterface and Process Data | mage

There are two ways of datatransfer between the HOST and the DEVICE:

+ Message oriented data transfer
For telegram oriented protocols like PROFIBUS-FMS the data transfer
happens with messages, which will be send or received over two mailboxesin
the dual-port memory. There is one mailbox for each direction (Send direction
and receive direction). Normally, the data transfer will be controlled by
events.

+ Processdataimage transfer
In fieldbus systems, which handle input and output data, like PROFIBUS-DP
or InterBus-S, there is a data image of the process data inside the dual-port
memory. Input data and output data have their own area and the data transfer
normally happens cyclic.

3.1.2 The Protocol Dependent and I ndependent User Interface

The user interface via the dual-port memory of the communication interface and
the communication module has two parts, a protocol dependent, and a protocol
independent part.

The protocol independent part of the dual-port memory is the main part of the
data between HOST and DEVICE.

The particular protocol dependent part are the parameters for initializing the
protocol and the message structure for exchanging jobs between the HOST and
the DEVICE. These jobs are caled messages. The structure of a message has
reached a high standard. This means that changing to another protocol is very
simple.

The exactly composition of a message is described in the paticular protocol man-
ual. The difference between the various protocols are only the protocol parame-
ters. The data model of the dual-port memory and the mechanism of message
exchange are aways the same.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 9

3.2 Interface Structure

The interface to the communication board based on a dual-port memory. The fol-
lowing picture shows the various parts of the dual-port memory.

User side dual-port memory CIF/COM side
process image Memory
output data .
— applicable
to fieldbus
systems
with 1/0
devices
process image as opposed
input data to a
— .
messaging
system

send mailbox

—
receive mailbox
¢ highest
1 KByte
— protocol parameter always
protocol status Pa— present
— system status <

One dua-port memory map for all CIFSYCOMs and all protocols with

Processimage for input and output data
+ Two mailboxes for message communication
Parameter areafor simple protocols (baudrate, data bits, parity ...)
« Protocol statusinformation (telegram counter, last error, valid slaves...)

System status (firmware name/version, CIF revision/serial number...)

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 10

3.3 Message and Process Data Communication

3.3.1 Message Communication

A message is a unique data structure in which the user transmits or receives com-
mands and data from the CIF or COM.

A message consists of an 8 byte message header, an 8 byte telegram header and
up to 247 bytes of user data.

+ Message Header Used from operating system for transportation of the
message. It is defined in this manua and constant for

the application.
. Telegram Header Definesthe action for the protocol task.
« User data Send/received data.
Parameter Type | Meaning
Msg.Rx byte Number of Receiving Task Message Header
Msg.Tx byte Number of Sending Task
Msg.Ln byte Number of Data length
Msg.Nr byte Number of Message for Identification
Msg.A byte Number of Responses
Msg.F byte Error Code
Msg.B byte Number of Command
Msg.E byte | Completion
Msg.DeviceAdr | byte | Communication Reference Telegram Header

Msg.DataArea | byte Data Block
Msg.DataAdr word | Object Index
Msg.Dataldx byte Object Subindex
Msg.DataCnt byte Data Quantity
Msg.DataType | byte Data Type

Msg.Fnc byte Service
Msg.D[0-246] byte User Data Telegram User Data

General structure of a message

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 11

The meaning of the telegram header is an example for PROFIBUS-FMS. For
other protocols the structure is the same but, the parameters change as for exam-
ple with Modbus Plus, from communication reference to slave address, object
index to register address or service to function code.

The driver transfers a message independant from the protocol and works transpar-
ent. The message reproduces the telegram.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication

12

3.3.1.1 Sending (Putting) and Receiving (Getting) M essages

user program dual-port memory internal message buffer PROFIBUS
send
ﬁ' message
\ send
message
receive
message %
receive
message 2 F‘\
receive
€—— | message F‘\

The user creates the send
message and writes it in
the send mailbox. This
message is set to be send
by the

DevPut Message()
command.

The device takes out the
message, putsit in an inter-
na queue and signals this
action to the HOST.

The queue is handled by
the FIFO principle. If the
message is on the first po-
sition, it will be decoded to
generate the send telegram.

If the device receives the
acknowledge telegram, it
generates a receive mes
sage and puts it in the
queue.

If the message is in the
first position and the re-
ceive mailbox is empty, the
message will be copied in
the mailbox and set valid.

The user takes out the re-
ceive message, with the
DevGet Message()
command, which sets the
mailbox state to empty.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 13

3.3.210 Communication with a Process | mage

In fieldbus systems with 10 devices like PROFIBUS-DP or InterBus-S thereisa
process image of the 10 data available directly in the dual-port memory. The ac-
cess is the same if the CIF or COM works as master or slave. Depending on the
application the user can choose between several handshake modes, or if only byte
consistence is required, the user can read and write without any synchronization.

3.3.2.1 Direct Data Transfer, DEVICE Controlled

user program dual-port memory PROFIBUS

The CIF/COM starts by it-
self a data exchange cycle
if itisa master, or it re-
ceives a data exchange cy-
input cleif itisslave.

data

v

A

outpat Now the user can read the
—> | daa new input data and write
the output data in the dual-
| input pOI’t memOI’y
E e Thisis done by the

DevExchangel ()
function.

output
data

The CIF/COM dtarts the
next data exchange cycle.

v

A

Typical application: Slave system, which must guarantee that the data from
every master cycle must be given to the user program.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication

14

3.3.2.2 Buffered Data Transfer, DEVICE Controlled

user program dual-port memory

internal buffer

input
data

PROFIBUS

output

—> | data

input
data

input

output
data

data <

Typical application:

CIF/ICOM makes cyclic
data exchanges on the bus.

After each data exchange
the CIF/COM checks, if
the dual-port memory is
available.

The user can read out the
input data and write the
new output data.

Thisis done by the
DevExchangel ()
function.

If there was one data ex-
change on the bus in the
meantime, the CIF/COM
exchanges the data be-
tween the internal buffer
and the dual-port memory.

Slave system, where the slave gets an interrupt
with the next data exchange cycle.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication

15

3.3.2.3 Uncontrolled Direct Data Transfer

user program dual-port memory

PROFIBUS

output

€—> | data

input

€—> | data

AAAAAA

YVYVYVYVYY

The user reads and writes

the process image, with the
DevExchangel ()

function, at the same time
like the CIF/COM.

The CIF/COM does cyclic
data exchanges and after
every exchange it makes
an update of the process
image.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 16

3.3.2.4 HOST Controlled, Buffered Data Transfer

user program dual-port memory internal buffer PROFIBUS

Cyclic data exchange

«—> between

“—> internal buffer and
<> PROFIBUS.
«—>

«—>

«—>

User reads last input data

o «—> and writes new output
—> | daa <> data, with the
<> DevExchangel () com-
input H mand
b' data H
<>

Data exchange continues.

—> | o
w. | €——
CIF stops data exchange,
puts the output data in the
internal buffer and the
latest input datain the
i e—> dual-port memory.
—_— > data S
I S—
input '
€| o <> User reads input data and
< writes output data
(DevExchangel Q()).
Typical application: Easiest handshake in master and slave systems

with a guaranteed consistence of the complete
process image.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication

17

3.3.2.5 HOST Controlled, Direct Data Transfer

user program dual-port memory

PROFIBUS

output

—> | data

output

v

data

input

A

data

input

<€— | data

Typical application:

No data exchange.

User writes new output
data, with the
DevExchangel ()

command.

CIF/COM starts one data
exchange with the output
data from the dual-port
memory and writes the
new input data in the dual-
port memory.

User reads new input data

with the next
DevExchangel ()

command.

Master system with synchronous IO devices.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication

18

3.3.3 Overview

The following table list the bus systems and protocols and shows which commu-
nication hasto be used for the (user) data transfer.

/0 communication

Message Communication

Read/Write

Send/Receive

PROFIBUS-DP Master

PROFIBUS-DPV1

PROFIBUS-DP Slave

PROFIBUS-DPV1

PROFIBUS-FMS

PROFIBUS-FDL
FDL defined

PROFIBUS-FDL
FDL transparent

InterBus Master (1/0)

InterBus Master (PCP)

InterBus Slave (1/O)

InterBus Slave (PCP)

CANopen Master (PDO)

CANopen Master (SDO)

CANopen Slave (PDO)

CANopen Slave (SDO)

DeviceNet Master (I/O)

DeviceNet Master
(Explicit Messaging)

DeviceNet Slave (1/O)

DeviceNet Slave
(Explicit Messaging)

ControlNet Slave
(Scheduled Data)

ControlNet Slave
(Unscheduled Data)

SDS Master

AS-Interface Master

- - 3964R

- RK512 -

- ASCII (Master mode) ASCII (Slave mode)
- Modbus RTU -

- Modbus Plus -

Modnet 1/N

Modnet 1/SFB

Bus systems/protocols and communication for data transfer

Note 1:

For 1O communication the driver function DevExchangel O() is neccessary.

For message communication the driver function DevPutMessage() and

DevGetMessage() are neccessary.

Note 2:

The list above documents the user data.

The bus systems and the protocols also offers possibilities of diagnostic, pa

rameter telegrams, control telegrams and more. These are not listed above.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 19

3.4 The Softwar e Structur e on the Communication Boar ds

The software is based on an extremely modular architecture. The protocol itself
is a self-contained module which has no variables in common with any other soft-
ware module apart from the operating system. It is therefore possible to
implement the protocol with the same software module on all our boards, thus en-
suring the greatest software quality.

The main parts of the firmware are the real-time operating system and the
protocol task(s).

3.4.1 The Real-Time Operating System

The operating system can manage 7 tasks, and is optimized for rea-time
communications services. It provides the following functions:

Distribution of computing time among the individual-tasks.
Task communication.

Memory management.

Provision of time functions.

Diagnostic and general management functions.

Transmit and receive functions.

The computing time is evenly distributed by the operating system among all tasks
ready to run. A task switch, i.e. switch over to the next task, takes place in cycles
every millisecond.

If atask has to wait for an external event, e.g. for the receipt of data, it is no
longer ready to run and atask switch is performed immediately.

The available computing time and the maximum possible sum baud rate make
sure, that a less prior task is not completely blocked by a high priority task. Pre-
sumably the data through put islower in this case.

Communication between the tasks takes place by messages. These are the areas
of memory made available by the operating system into which the tasks write
data. Transport of messages from one task to another and notification to a task
that a message is there is handled by the operating system.

The operating system also manages the memory area for storage of the tasks and
their stack. Individual tasks can be deleted or reloaded.

A task can wait for an event and the operating system will restart the task when
the event has occurred, the time resolution is 1 millisecond.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Communication 20

The operating system can stop or start individual tasks and pass on certain jobs to
them. The tasks thus make available datain the trace buffer which is managed by
the operating system.

The operating system communicates with the HOST (PC or a similar device) via
the dual-port memory interface. There is access to the individual-operating
system functions and to the individual tasks via the communications system.

3.4.2 The Protocol Task

The protocol task is responsible for transmission of the data in accordance with
the protocol. The parameters it requires for this are taken from the dual-port
memory or from the FLASH-memory.

A transmit job is always initiated with a message. This contains all the datato be
transmitted. These are provided with any control characters and checksums
required and then output by interrupt or DMA. At the same time, the
corresponding monitoring periods are started. When the data has been transfered
or an error has occurred, a corresponding acknowledgment is returned to the
sender of the message.

Depending on the protocol, receive messages are restored after the transmission.
Receiving is done by interrupt or DMA. If a message has been received without
error, it is passed on by message to the PC viathe dual-port memory interface.

1/0 oriented protocol tasks work on the bus independently according to the given
protocol specification. The data transfer is not done by a message, but is done by
direct reading or writing to the send and receive data in the dual-port memory.

As the protocol task runs independently, a wide variety of protocols can be
implemented on the CIF, PC/104 or COM by replacing this task. Different tasks
can also be used for the two serial interfaces.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

DOS/Windows 3.xx function library 21

4 DOS/Windows 3.xx Function Library

The DOS/Windows 3.xx function library includes all necessary functions to
make an application working with a communication device. The interface is the
same as used by the device drivers, so an upgrade to this drivers will be very
easy.

On a DOS/Windows 3.xx system there is no interrupt handling of the communi-
cation boards available.

-~

User- Application

¢

DOS/Windows function library

A
application T
operating sysem v
Operating Sysem
hardware v
Board O 1

Function overview:

DOS/Windows 3.xx
handles up to four communication board
the libraries are compiled in the LARGE-Memory model
Available asaWindows 3.xx DLL

ANSI C compatible source code available

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

DOS/Windows 3.xx function library 22

Some functions are only for compatibility with the device driver like
DevOpenDri ver (), DevC oseDriver() and DevCGetDriverlnfo().
These function do nothing when used in a Windows 3.xx environment.

The following development platforms are used:

DOS Microsoft Visual C++, V 1.5x
WINDOWS Microsoft Visual C++, V 1.5x

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

DOS/Windows 3.xx function library 23

4.1 Toolkit Contents

The whole DOS/Windows 3.xx source code and library files are locatetd on our
System Software CD, in the \DRVPRG\16Bit directory.

This directory contains a number of subdirectories.

Directory structure:

CD Path: DRVPRG

Header - DUALPORT.H definition of the communication interface dual port
memory structure
- RCS_USER.H definitions for the communication interface
operating system (RCS)
- Fieldbus specific header files

CD Path: DRVPRG\16Bit

Subdirectory Description

DLL Windows 3.xx DLL (CifWinDI.DLL)

LIB Function library for DOS (CifDOS.lib) and Windows 3.xx
(Cifwin.lib)

PRG Function library source code and header files

CD Path: DRVPRG\16Bit\Demo

Subdirectory Description

C Simple Message and IO data transfer source code example
(Demo.c)

ASi Simple AS Interface 10-View example

CANOpen Simple CANopen 10-View example

CtriNet Simple ControlNet IO-View example

DevNet Simple DeviceNet |O-View example

Interbus Simple InterBus 10-View example

Profibus\IOVIEW |Simple PROFIBUS |IO-View example

Profibus\FMS Simple PROFIBUS FMS example

SDS Simple SDS 10-View example

VBasic30 Visual Basic 3.0 demo program including the definition file
CIFDEF.BAS

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

DOS/Windows 3.xx function library 24

4.1.1 Toolkit File Description

The DOSlibrary files:

CIFDOS.LIB

The Windows 3.xx files:

CIFWINDL.DLL
CIFWINDL.LIB
CIFWIN.LIB

Function library of the user interface

Dynamic Link Library
DLL library file

C-Function library

Common DOS and Windows 3.xx files:

CIFUSERH
CIF_DPM.C
CIFWINDL.DEF
DPMI.C
DEMO.C

DEMO.H

Demo program:
DOS DEMO.EXE
WIN_DEMO.EXE

Header file of the user interface

Function library source code

Function export definitions for the Windows 3.xx DLL
Memory allocation functions for Windows 3.xx

Source file of the demo program, demonstrates the use
with a simple communication protocol.

Include file of the demo program

Demo program for DOS (created from DEMO.C)

Test program for Windows 3.xx (created from
DEMO.C)

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

DOS/Windows 3.xx function library 25

4.2 Using with DOS and Windows 3.xx

The difference between the Windows 3.xx and the DOS functions is the access to
the DPM (dua ported RAM) of the communication board.
With DOS the access is a simple address which can be loaded to a pointer.

Windows 3.xx normally does not alow direct memory access. To get access, the
DPMI (DOS Protected Mode Interface) of Windows 3.xx is used.

The memory will be allocated in the function Devl ni t Boar d() and released
in the function DevExi t Boar d() .

4.3 Using Visual Basic 3.0/4.0 (16 bit)

For Visual Basic 3.0/4.0 16 Bit we have created the file CIFDEF.BAS. This
file includes all the necessary definitions to access a communication device by
the 16 Bit windows DLL CIFWINDL.DLL.

4.4 \Writing an own Driver or Library

To write an own driver or function library, we provide the dua port memory
structures in the file DUALPORT.H and the general definitions RCS USER.H
for the operating system (RCS) which is running on the communication device.

4.5 Using the Sour ce Code

Sometimes it is not possible to use the given libraries. Mainly by using realtime
DOS enviroments or other operating systems like Linux, QNX or VxWorks.

Therefore we providing the whole source code in the CIF_DPM.C file. Thisfile
is used to generate the libraries and DLLs for DOS and Windows. To determine
the type of generation, the file includes three definitions (WINDLL, DRV_WIN

and DRV_DOS).
Definition Description
_WINDLL Create a Windows 3.xx DLL
- Define APIENTRY and EXPORT for the calling convention of DLL
functions.
- Generate a LibMain() function as the standard DLL entry point
- Use the Windows 3.xx function GetTickCount() to read the system
time.
DRV_WIN Used in conjunction with _WINDLL

- Use Windows 3.xx DPMI (DOS protected mode) function to map
the dual ported memory address of the hardware.

DRV_DOS Create a standard DOS library or object file

- Use the given physical hardware address to access the dula
ported memory.

- Use ((clock()*1000L)/CLOCKS_PER_SEC) to calculate the actual
system time.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 26

5 The Device Driver

5.1 Windows 9x, Windows NT and Windows 2000
The device drivers, also known as VxD (virtual device drivers), are running in

the kernel of multitasking operating systems like Windows 9x, Windows NT or
Windows 2000 and offers the best performance for drivers.

-

User- Application

'

CIF Device Driver Interface
(CIF32DLL.DLL)

application T
operating sysem l
Operating Sysem

CIF Device Driver

T 7]

S I B

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 27

Function Overview:

handles one to four communication boards at once

« Interrupt and polling mode useable for each board (except PCMCIA)

The device drivers for Windows 9x, Windows NT and Windows 2000 can handle
up to four communication boards.

All boards can be run in interrupt or polling mode. If interrupt mode is config-
ured for aboard the device driver will install an interrupt service function for this
board. The driver will install an own interrupt service function for each interrupt
driven board. So the boards can be handled independently.

The difference between interrupt and poll mode is only the handling of applica-
tion request during timeout situations. If an application has to wait for a function
(e.g. DevReset ()) so in interrupt mode the application will be blocked in the
driver and the CPU isfreeto do other work. After the given timeout or at the end
of the command, the application is released and does normal executing.

In poll mode the driver will run a "while loop", waiting until the function has
finished or the given timeout is reached. The user can also use the functions with-
out timeout (timeout=0) and run the polling by itself.

It is possible to use independent processes for send message (DevPut Mes-
sage()), receive message (DevCGet Message()) and /O data transfers (De-
vExchangel ()). Each process will be blocked in the driver when necessary
without blocking the other ones.

If threads are used and a function has to wait for a certain operation (timeout
paramter unequal 0), the driver blocking mechanism will block each thread which
is accesseing the driver. This is by design, because all threads in a process are
sharing the same driver handle (hidden in the driver API DLL).

A solution is to use timeout=0 in the driver functions and to check the return val-
ues if the function is processed without an error. For the message transfer func-

tions (DevPut Message() and DevGet Message()),
DevGet MBXSt at e() can be used to check if the function can be e executed.
immediatley.

On each board only one receive (DevGet Message()), one send (DevPut Mes-
sage()) and one |O-Exchange (DevExchangel ()) command can be active at
the same time, because there is no command queuing in the driver implemented.
So if one command for the specific function is active, all further commands to the
same function will be returned with an error. All other driver functions are reen-
trant and can be called at every time.

Notice Switching between pooling mode and interrupt mode is
supported by thedriver setup program (DrvSetup)

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver

28

5.1.1 Contents for Windows 9x, Windows NT and Windows 2000

Directory

Subdirectory

Description

DRVPRG

API

Application Programing Interface, libraries and header
files to access the 32 Bit driver interface DLL (the DLL
is installed by the driver installation)

DEMO

C: Simple Message and 10 data transfer source code
example (Demo.c)

MSG_DBG: Complete CIF device driver test program
written in C++, created with Microsoft Visual C/C++ 4.2

VBasic32: Visual basic demo program created with
Microsoft Visual Basic 4.0 32 bit

HEADER

C header files for the various fieldbus systems

MANUALS

Device driver manual and all protocol interface manuals

FMS_DEMO

Simple 32 bit console application to demonstrate a
send and receive message for the PROFIBUS-FMS
protocol

Windows 9x, Windows NT and Windows 2000 API files;

CIF32DLL.DLL Dynamic link library of the driver interface, created for use
with Windows 9x, Windows NT and Window 2000 (the files
CIFO5DLL.DLL/.LIB and CIFNTDLL.DLL/.LIB are only
used for compatibility with older user applications)

CIF32DLL.LIB

CIFUSER.H

Definition

file with the exported function of the

CIF32DLL.DLL.

Definition header file for the user interface.

Device Driver files;

CIFDEV.VXD
CIFDEV.SYS

Applications:

DrvSetup.EXE

CIF Device driver for Windows 9x
CIF Device driver for Windows NT or Windows 2000

CIF Device Driver Setup program for registry entries

Msg_dbg.EXE or DrvTest.EXE

CIF Device Driver Test program to run the various
device driver functions

Development platfor m:
Microsoft Visual C++, V 6.x
Windows NT 4.0 Microsoft Visual C++, V 6.x

Windows 9x

Windows 2000

ATTENTION:

Microsoft Visual C++, V 6.x

The CIF Device Driver DLL and the driver files areinstalled during the driver in-
stallation and not included in the development directories.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 29

5.1.2 Installation of the Device Driver

The device driver will be installed by an installation program. This will guide you
to the installation process. The installation program will run the following steps:

Creating the standard registry entries for the CIF Device Driver
+ Copying the device driver and interface DLL files

Copying the device driver setup and test program

5.1.2.1 Standard Registry Entries Windows 9x and Windows NT

Windows 9x registry path:
\HKEY_LOCAL_MACHINE\System\CurrentContr ol Set\Ser vices\V xD\

Windows NT registry path:
\HKEY_LOCAL_MACHINE\SY STEM\CurrentContr ol Set\Ser vices\

CIF Device Driver entry:
CIFDEV - PClSupport 0x00000000 // Enable PCI support
\ BoardO
\ Boardl
\ Board2
\ Board3

The default entries are:

Boar dO - BUSType 0x00000000 // 1SA, PCl, PCMCIA
- DPMBase 0x000ca000 // physical dual port address
- DPMSi ze 0x00000002 // DPM size in KBytes
- IRQ 0x00000000 // interrupt of the board
- PCl I ntEnabl e 0x00000000 // PCl interrupt enabled
Boar d1 - BUSType 0x00000000 // not assigned
- DPMBase 0x00000000
- DPMsi ze 0x00000000
- IRQ 0x00000000
- PClIntEnabl e 0x00000000
Boar d2 - BUSType 0x00000000 // not assigned
- DPMBase 0x00000000
- DPMsi ze 0x00000000
- IRQ 0x00000000
- PCl I ntEnabl e 0x00000000
Boar d3 - BUSType 0x00000000 // not assigned
- DPMBase 0x00000000
- DPMsi ze 0x00000000
- IRQ 0x00000000

- PClIntEnabl e 0x00000000

Note:

All entries under the key CIFDEV which are not described here, are created auto-
maticly by the used operating system and should not be changed. To show the en-
tries you can use the system program REGEDIT.EXE (located in the Windows
9Ix\system or Windows NT\system32 directory).

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver

30

5.1.2.2 Standard Registry Entries Windows 2000

Windows 2000 registry path:
\HKEY_LOCAL_MACHINE\SY STEM\CurrentContr ol Set\Ser vices\

CIF Device Driver entry:

CIFDEV

- PClIntEnable
\ BoardO
\ Boardl
\ Board2
\ Board3

The default entries are:

Boar dO\
Boar d1\
Boar d2\
Boar d3\

Note:

All entries under the key CIFDEV which are not described here, are created auto-
maticly by the used operating system and should not be changed. To show the en-

- DevActive

- DevBUSType

- DevErrorDriver

- DevError RCS

- Devl RQVect or

- Devl nf oDevi ceNunber
- Devl nfoSerial Nunber
- Devl nf oFi r mnar eNane
- Devl nf oFi r mnar eDat e
- DPMBase

- DPMsi ze

- IRQ

- PClError

- PCl BurstLength

- PCl BusNunber

- PCl Sl ot Nunber

0x00000000

Devi ce avtive

// Disable PCI interrupt

Bus type (1=l SA 4=PCl, 5=PCVCI A)

Driver error

RCS error

System | RQ vect or
Devi ce nunber

Devi ce serial nunber
Fi rmnar e nane

Fi rmnare date

Physi cal DPM address
DPM si ze in bytes

I RQ
PCl
PCl
PCl
PCl

error
burst length
bus nunber
sl ot nunber

(n.c.
(n.c.
(n.c.

— — —

tries you can use the system program REGEDIT.EXE (Windows\system32

directory).

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 31

5.1.2.3 Driver Filelnstallation

Device Driver Files:

Windows9x Thedriver file CIFDEV.VXD is copied to
%System Root%\System directory.

« WindowsNT Thedriver file CIFDEV.SY Sis copied to
%System Root%\System32\drivers directory.

Windows 2000 The driver file CIFDEV.SY Sis copied to
%System Root%\System32\drivers directory.

Device Driver InterfaceDLLSs:

Windows9x Thedriver DLL CIF32DLL.DLL iscopied tothe
%System Root%\System directory.

« WindowsNT Thedriver DLL CIF32DLL.DLL iscopiedtothe
%System Root%\System32 directory.

Windows 2000 The driver DLL CIF32DLL.DLL iscopied tothe
%System Root%\System32 directory.

Device Driver Utilities:

- Installation path <System>\Program Files\CIF Device Driver
DrvSetup Driver setup programm

« MSG_DBG or DrvTest Driver test programm
INF files Hardware description for PnP OS installation

Note:
Also two DLLs named CIFO5DLL.DLL and CIFNTDLL.DLL are copied to the
specific system directory. This is done for compatibility with some older cus-
tomer applications which are using these DLLs either on Windows 9x,Windows
NT or Windows 2000. All of the DLLs are code compatible and differ only in the
name.

For new devel opments use the name independent driver DLL CIF32DLL.DLL.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 32

5.1.2.4 Driver Utilities

The driver including a driver setup (DRVSETUP.EXE) and a driver test
(MSG_DBG.EXE or DRVTEST:EXE) program.

These files are also installed during the installation procedure. Therefore, the in-
stallation program creates a CIF Device Driver directory below the standard
PROGRAM directory where the files are copied. Also a program folder CIF De-
vice Driver is created.

For the PnP operating systems Windows 9x and Windows 2000, additional direc-
tories are generated below the CIF Device Driver directory. These directories are
holding the INF files which are neccessary to install hardware.

5.1.3 Device Driver startup
The device drivers are loaded during system start. During the startup phase, the

drivers are reading the configuration datas about I1SA, PCl and PCMCIA boards
from the registry database of the operating system.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 33

5.1.4 Configure the Windows 9x and Windows NT Driver

The user must configure the physical memory address, the size of the DPM and
the interrupt number of each communication board.

All these informations are written to the registry data base of the operating
system.

To get an easy access to this data the device driver gets its own setup program
DRVSETUP.EXE. This program will help you to change the registry entries
without using REGEDIT.EXE. It is also used during installation to configure the
communication boards for the first time and it will be copied to your hard disk
drive for further use. The program is able to determine the Windows platform and
show thisin the caption line of the program.

¥ CIF Device Driver Setup Windows NT !EIE

BCl PCHMCIA Help
Driver identification |[DEWDriver W2.020 ; Cancel |
LCance
Dual-port memary Dual-port mermary Interrupt number Buz type
baze address gize
Board 0 |E1 Q00000 IB K.EByte ﬂ IF"Z'"inEI ﬂ FLl
Board 1 II:.-'.‘-.EII:IEI |2 EEute j IF'D"iﬂEI ﬂ 54
Bosid 2 [fio000 [NONE d I T
B 3 [oon00 [NONE ~] Inone] NOME
Frogram state [READY
parameter description

DPM base address |Physical memory address of the device.
A0000 to FFO0O in 2 kbyte steps.
(CA000, CA800, CBO00O......)

DPM size Physical dual port memory size given in kBytes. If no entry is
defined, the driver uses 2 kBytes as default.

NONE = Board not configured

2 kByte = 4096 bytes

8 kByte = 8192 bytes

Interrupt number Physical interrupt number.

NONE = Board not configured

POLLING = Driver does not use interrupts
(3,4,5,6,7,9,10, 11, 12, 14, 15)

NOTICE: Compar e the settings you made with the actual jumper
settings of the communication board.
Invalid entriesin the registry, forces the driver to unload
itself.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 34

5.1.5 Configure the Windows 2000 Driver

Windows 2000 is a Plug and Play operating system. The device settings are done
with the Device Manager.

PnP devices like PCl and PCMCIA, will be recognized by the operating system,
when they inserted in the PC. The Device Manager from Windows 2000 will ask
for a INF file, which describes the hardware. These files can be found either on
the System Software CD (directory Driver\Win2000) or after running the driver
setup program in the <Install Directory>\CIF Device Driver\Win2000.

ISA devices must be inserted manualy by the use of the hardware Wizard. An
INF file is also neccessary and can be found at the above described places.

The driver setup program (DRVSETUP.EXE) for Windows 2000 only gives the
possibility to global enable or disable interrupt handling for all PCI boards. All
other settings must be done by the use of the Device Manager and the Hardware

Wizard.
_i0ix]
PCI Help
Ciriver : : Y
|dentification |CIFDr|ver w3100 g
Dual-port memary Interrupt
Device Mo. Sernal Mo, Firrmware Address Size Mumber Bus Type
Board 0 |E|8I34EID'I a |DDDDI35E!4 |F'E -COMEI |EIF5EI-F'E |D2DDDDEIEI |8 FByte ||:n:|||ing |F'|:|
Board 1 |E|?'I 10010 |EIEIEIEIEIEI‘I 9 |DF'S |I:IF5EID PS5 |D2EIEISEIEIEI |2 FByte ||:u:u||ing |F'I:I
Board 2 | | | | | | | |
Board 3 | | | | | | | |
Program State [READY
NOTICE: For | SA devicesyou haveto make sure,

the hardware jumper setting corresponds to the software
setting. Invalid or different settings can result in an unde-
fined system behaviour.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 35

5.1.6 System Startup
Windows 9x and Windows NT:

On Windows 9x and Windows NT PCs, you have to restart the system to load the
devicedriver.

Each change to the setting of a device (ISA, PCI, PCMCIA) needs a system re-
start.

Windows 2000:

Windows 2000 doesn't need a restart after driver installation. The driver will be
automaticly loaded if adeviceisinstalled.

A system restart is only necessary if either the PCl interrupt setting
(polling/interrupt) or the settings of an ISA device is changed.

Startup Information:

« Windows9x Thedriver will show the following lines at system start:
CIF Device Driver
Release V X.xxx
After the restart the driver is ready to work.

« WindowsNT Change to the <Control panel> and open <devices>, this
should show "CIFDEV started system”. You can check the
correct instalation of the driver by running NT diagnosis
'drivers.

After the restart the driver is ready to work

Windows 2000 Open <Control Panal><Administrativ Tool><Computer Man-
agement><System Information><Software Enviroment>
<Drivers>
The driver "CIFDEV" will be shown either running or
stopped. It should be in the state running, if at least one device
isinstalled.

A second indication if the driver isinstalled and runnging is a
CIF device without any errorsin the Device Manager.
Because only devices which are accepted by driver will be
shown without any errors.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 36

5.2 Windows CE

On Windows CE we distiguish between two drivers to support PCMCIA and
ISA boards. This is done to match the Windows CE specific conditions to the
best. The main difference is the startup procedure between the two driver types.
PCMCIA drivers will be loaded automaticly, by the operating system, using the
PnP-ID of the PCMCIA board, if the deviceis plugged into the system.

ISA driver can be loaded at system start or at runtime by an application. There-
fore we have created two drivers and they can't run at the same time on a system.

Both drivers are loadable drivers which must not be included into the Windows
CE kernel (binary).

The Windows CE device driver interface corresponds to the Windows 9x/NT in-
terface, so al function which are defined in this manual are also available on the
CE system.

-~

User- Application

'

CIF Device Driver Interface
(CIFCEDLL.DLL)

application T
operating sysem l
Operating Sysem

CIFISA.DLL | CIFPCC.DLL

Windows CE
sysem driver

! I

Board O 1 l

hardware

Board O

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver

37

Function overview:

ISA driver handles up to four communication board

+ PCMCIA driver handles one communication board
L oadable driver, which must not be included into the Windows CE kernel

+ Nointerrupt functionalities included yet

Source code included

« PCMCIA and ISA driver are not able to run at the same time

Development platfor m:

Windows CE

Embedded Toolkit 2.10, Microsoft Visual C/C++, V 5.x

5.2.1 Contentsfor Windows CE

The whole Windows CE source files including the Microsoft Visual C projects
files, the protocol interface manuals and the protocol definition files are located
in the \DRVPRG directory.

Directory Subdirectory |Description
CEDRVX.xxx CifDrv CifISA: Device driver for ISA boards (CIFISA.DLL)
CifPCC: Device driver for PCMCIA boards
(CIFPCC.DLL)
CifCEDII Device driver interface DLL (CIFCEDLL.DLL)
CifTest Driver test program (CIFTEST.EXE)
DrvSetup Driver setup program (DRVSETUP.EXE)
IODemo Simple 1/O demo program (IODEMO.EXE)
Include Include directory for applications, holds the
definition file CIFUSER.H
Manuals Protocol and driver manuals in the .PDF file format
Headers Protocol definition files
Driver files:
CIFISA.DLL CIF Device Driver supporting | SA boards
CIFPCC.DLL CIF Device Driver supporting PCMCIA boards

CIFCEDLL.DLL

CIFUSER.H

Applications:

DrvSetup.exe

CifTest.exe

IODemo.exe

CIF Device Driver application programing interface DLL
C definition file

Setup program to create standard PCMCIA and ISA
registry entries and to configure up to 4 |SA boards

CIF Device Driver test program to run the common driver
functions

Simple I/O demo application

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver

38

Runtimefiles;

The used version of the Microsoft Windows CE Toolkit supports the CPU types
Intel x86, SH3, PPC and MIPS. The drivers and programs are compiled for each
of these CPUs and included in this package. Y ou find these files in the \DRIVER

directory.

Directory

Subdirectory |Description

V1.000

WCEPPC Runtime version for the PPC CPU

WCEXx86 Runtime version for the x86 CPU
WCESH Runtime version for the SH3 CPU
WMIPS Runtime version for the MIPS CPU

5.2.2 Installation of the Device Driver

To install the CIF Device Driver, the driver file and the utility programs must be
copied to the Windows CE target system.

Driver Driver

The driver must be copied to the Windws CE system
directory

Driverinterfface DLL ~ The interface DLL should also be placed into the Win-

Driver utilities

Note:

dows CE system directory, so it is reachable from all
applications

Can be placed in any user directory

The executable programs are written by the use of the MFC and compiled with
the option "Use MFC as a static Library", so it should not be necessary to have a
MFC.DLL on the Windows CE target system. The debug vesions of the programs
are compiled with the option "Use MFC in a Shared DLL". Therefore it is neces-
sary to put the debug version of the MFC DLL on the target system.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 39

5.2.2.1 Standard PCM CI A Registry Entries

Each PCMCIA board must have an own entry in the Windows CE registry. The

entry is located under the key
[HKEY_LOCAL_MACHINE][Drivers|[PCMCIA].

The following boards are defined at the moment:

CIF60-PB PROFIBUSDP and FMS

CIF60-CAN CAN open (CIF60-COM)
Device Net (CIF60-DNM)
SDS (CIF60-SDSM)

CIF60-I1BM InterBus Master

Run the device driver setup program DRVSETUP.EXE to create the PCMCIA
entries. Therefore you have to go to the menu point <Registry> <Create PCMCIA
entries>. With the create button, all of the following entries will be created. To

remove the entries use the delete button. There is no further configuration
necessary.

PCMCIA registry entries:

HKEY_LOCAL_MACHI NE:

Drivers
PCMCI A
Hi | scher _GrbH Cl F60_PB- CEOC
| ndex: 1 /1 Dword
Prefix: "CF" /1 String
DLL: "Cl FPCC. DLL" /1 String
Devi ceType: 3 /1 Dword
DPNVSI ze: 8 /1 Dword
PCMCI A
Hi | scher _GnbH- Cl F60_CAN- 8E6F
| ndex: 1 /1 Dword
Prefi x: "CF" /1 String
DLL: "Cl FPCC. DLL" /1 String
Devi ceType: 3 /1 Dword
DPMEBI ze: 8 /1 Dword
PCMCI A
Hi | scher _GnbH Cl F60_| BM 0761
| ndex: 1 /1 Dword
Prefix: "CF" /1 String
DLL: "Cl FPCC. DLL" /1 String
Devi ceType: 3 /1 Dword
DPMVSI ze: 8 /1 Dword

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Device Driver 40

5.2.2.2 Standard | SA Registry Entries

The ISA device driver for Windows CE is able able to handle up to four ISA
boards at a time. The driver must be inserted in the Windows CE registry under
thekey [HKEY_LOCAL_MACHINE][Driversg|[BuiltIn].

Run the device driver setup program DRV SETUP:.EXE to create the default reg-
istry entries for ISA boards. Therefore, go to the menu point <Registry> <Create
ISA entries> and use the create button to create the standard entries, shown be-
low. Use the delete button to remove al 1SA entries from the registry.
Afterwards, change to <ISA bus> <Board setup> to configure each ISA board
independently.

Registry entries:

HKEY_LOCAL_MACHI NE:

Drivers
Builtln
Cl FDEV

| ndex 1 /1 Dword

O der 3 /1 Dword

Prefix "CF" /1 String

DLL "Cl FI SA. DLL" /1 String

Devi ceType O /1 Dword

PCl Support 0 /1 Dword

Boar dO
BUSType 0 /1 Dword
DPMBase 000CA000 /1 Dword
DPNVSI ze 2 /1 Dword
I RQ 0 /1 Dword
PCl | nt Enabl e 0 /! Dword

Boar d1
BUSType 0 /1 Dword
DPMBase 000CA000 /1 Dword
DPMVSI ze 2 /1 Dword
I RQ 0 /1 Dword
PCl | nt Enabl e 0 /1 Dword

Boar d2
BUSType 0 /1 Dword
DPMBase 000CA000 /1 Dword
DPNVSI ze 2 /1 Dword
I RQ 0 /! Dword
PCl | nt Enabl e 0 /1 Dword

Boar d3
BUSType 0 /1 Dword
DPMBase 000CA000 /1 Dword
DPNVSI ze 2 /1 Dword
I RQ 0 /1 Dword
PCl | nt Enabl e 0 /1 Dword

5.2.3 Configure the Device Driver

The standard configuration and the specific board configuration can be done by
the DRV SETUP.EXE program.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 41

6 Programming Instructions

6.1 Includethe Interface API in Your Application

For the user API there is only one include file CIFUSER.H which contains all the
necessary information like structure, constant and prototype definitions. A com-
plete function description is given in the chapter 'The Programming Interface’.
Link the device API-DLL (CIFWINDL.DLL, CIF95DLL.LIB, CIFNTDLL.LIB)
according to your operating system) to your program. Make sure you have in-
stalled the device driver if thisoneis used.

For the support of the various protocols, each protocol has its own header file
where all the protocol dependent definition are included (e.g. DPM_USER.H for
the PROFIBUS-DP Master protocol). Furthermore, there exists an include file
RCS USER.H for the definitions of the operating system of the communication
boards.

6.2 Open and Closethedriver
Only three functions are needed to get a DEVICE to work:

Open a Driver

+ Open thedriver
DevQpenDri ver (), checksif adriver isinstalled

Initialize your communication board
Devl ni t Boar d() , check if aspecific board is available

« Set the application ready state
DevSet Host St at e(HOST_READY) , signals the board an application

After these functions your application is able to start with the communication.

Close a Driver

+ Clear the application ready state
Dev Set Host St at e(HOST_NOT_READY) , signals the board, no applica
tion running

Close the board link
DevExitBoard(), unlink from a board

+ Close the device driver
Devd oseDri ver (), closealink to the device driver

After calling these functions all resources for the communication APl are freed.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 42

6.3 Writing an Application

6.3.1 Deter mine Device Information

The interface API includes information functions, which gives an application the
possibility to determine the installed DEVICEs, the actual driver version and the
firmware name and version installed on the device.

We suggest to read out these informations and make them accessible to the user.
This information can be used by support inquiries to our hotline.

Important informations:

+ Driver version
- DEVICE type, model and serial number

« Firmware name and version

Read infor mations about installed devices:

After opening the driver with DevOpenDriver(), the function DevGetBoardInfo()
can be used to read the driver version and the installed devices.

voi d Denp (void)

{
short sRet ;
BOARD_| NFO t Boar dI nf o;

if ((sRet = DevOpenDriver(0)) == DRV_NO ERROR) {
/1 Driver successfully opend, read board infornation
if ((sRet = DevGetBoardl nfo(O,
si zeof (tBoardlnfo),
t Boardl nfo) !'= DRV_NO ERROR) {
/1 Function error
printf("DevGetBoardl nfo RetWert = 9%d \n", sRet);
} else {
/'l Information successfully read, save for further use
/1 Check out which boards are avail able
for (usldx = 0; usldx < MAX_DEV_BQARDS; usldx++){
if (tBoardlnfo.tBoard[usldx].usAvail able == TRUE) {
// Board is configured, try to init the board
sRet = DevlnitBoard(tBoardl nfo.tBoard[usldx].usBoardNunber,
NULL) ; /1 for Wndows 9x/NT
if (sRet !'= DRV_NO ERROR) {
/1 Function error
printf("DevlnitBoard RetWert = 9%d \n", sRet);
} else {
// DEVICE is available and ready............

Please refer to the function DevGetBoardinfo() for a description of the
BOARD_INFO structure.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 43

Read infor mations about a specific DEVICE:

After opening a specific DEVICE with Devl ni t Board() alot of informa
tions about a DEVICE can be read by the function DevGet | nf o() .

voi d Denp (void)

{
short SRet;
BOARD_| NFO t Boar dI nf o;
FI RMMRE_| NFO t Fi r mwar el nf o;
VERSI ON_I NFO t Ver si onl nfo;
DEVI NFO t Devi cel nf o;
if ((sRet = DevOpenDriver(0)) == DRV_NO ERROR) {
Il Driver successfully opend, read board infornmation
if ((sRet =DevGCetBoardlnfo(O,
si zeof (tBoardlnfo),
t Boardl nfo) !'= DRV_NO ERROR) {
/1 Function error
printf("DevGetBoardl nfo Ret Wert = 9%d \n", sRet);
} else {
/1 Information successfully read, open all existing boards
for (usldx = 0; usldx < MAX_DEV_BQARDS; usldx++){
if (tBoardlnfo.tBoard[usldx].usAvailable == TRUE) {
/1 Board is configured, try to init the board
sRet = DevlnitBoard(tBoardlnfo.tBoard[usldx].usBoardNunber,
NULL) ; /1 for Wndows 9x/NT
if (sRet !'= DRV_NO ERROR) {
/1 Function error
printf("DevlnitBoard RetWert = 9%d \n", sRet);
} else {
// DEVICE is available and ready............
/1 Read DEVI CE specific information (VERSI ON_I NFO
sRet = DevGetlnfo(tBoardl nfo.tBoard[usldx].usBoardNunber,
GET_VERSI ON_I NFOQ,
si zeof (t Versi onl nfo),
t Ver si onl nf o) ;
/1 Read DEVI CE specific information (DEVI CE_I NFO
sRet = DevGetlnfo(tBoardl nfo.tBoard[usldx].usBoardNunber,
GET_DEV_I NFQ,
si zeof (t Devi cel nfo),
t Devi cel nfo);
/1 Read DEVI CE specific information (FI RMWARE_I NFO
sRet = DevGetlnfo(tBoardl nfo.tBoard[usldx].usBoardNunber,
GET_FI RMWMRE_I NFO,
si zeof (t Fi rmnar el nf o),
t Fi r mnar el nf o) ;
}
}
} /* end for */
}
}
}

Please refer to the DevGet | nf o() function for a description of the different in-
formation structures.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 44

6.3.2 Message Based Application

On message based application you have to be aware that a DEVICE can only
queue a fix number of messages (normally 20 to 128). Message queuing will be
done in send and receive direction. This means, the HOST and the connected pro-
tocol will share all available messages. Each request or response from both sides
will occupy a message until it is transfered to the other side.

If the amount of messages exceeds the given limit, no matter if the HOST or the
protocol uses all the messages, the DEVICE is not longer able to create a re-
sponse for a send or receive request.

This will happen until a message is freed by transferring it to the HOST or send-
ing it over by the protocol. This will free a message, which can be used for an-
other data transfer.

So an application should aways be able to receive messages to prevent the
DEVICE for overrunning by the use of messages.

After opening the device interface and setting the application ready state, the ap-
plication must be able to process receive messages from the DEVICE.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 45

Example 1:

/***
. .

/ Mai npr ogr am
/***

include "cifuser.h"
int main(void)

{
short sRet ;
MSG_STRUC t Recei ceMessage;
MSG_STRUC t SendMessage;
/* _________________________________ */

/* Qpen the driver */
if ((sRet = DevQpenDriver(0)) != DRV_NO ERROR) {
printf("DevOpenDriver Ret Wert = 9%d \n", sRet);

/* _________________________________ */
/* Initialize board */
} elseif ((sRet = DevlnitBoard (O,
(voi d*) O0xCA000000)) != DRV_NO ERROR) ({
printf("DevlnitBoard RetWert = 9%d \n", sRet);

/* _________________________________ */
/* Signal board, application is running */
} else if ((sRet = DevSetHostState(O,
HOST_READY,
OL) !'= DRV_NO ERROR)) {
printf("DevSetHostState (HOST_READY) RetWert = %d \n", sRet);

} else {
while (...PROGRAM IS RUNNING ...) {

/1 Application work........

/1 Try to read a nessage
sRet = DevGCet Message(O,
&t Recei veMessage,
100L); /1 Wait a maxi mum of 100 ns

if (sRet == DRV_GET_TI MEQUT) {
/1 No nessage avail abl e
[l Try again..............
} elseif (sRet = DRV_NO ERROR) {
/1 This is a function error
/1 Process error
} else {
/1 Message avail abl e
/1 Process nessage

}

/1l Try to send a nessage
/] Create a nessage |ike described in the protocol nanual
sRet = DevPut Message(O,
&t SendMessage,
100L); // Wait a nmaxi mum of 100 ns
if (sRet == DRV_PUT_TI MEQUT) {
/1l Message coul d not be send
/1 Mailbox full......
} elseif (sRet '= DRV.NO ERROR)) {
/1 Error during send nmessage
/'l Process nmessage error

}
} /* end while*/

/1 dose the application
/* ________________________________ */

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 46

/* Signal board, application is not running */
if ((sRet = DevSet Host St at e(0,
HOST_NOT_READY,
OL)) !'= DRV_NO ERROR) {
printf("DevSetHost State RetWert = 9%d \n", sRet);
}

/* ________________________________ */
/* Free board */
if ((sRet = DevExitBoard (0)) !'= DRV_NO ERROR) {
printf("DevExitBoard Ret Wert = 9%d \n", sRet);
}

/* ________________________________ */
/* Cose driver */
if ((sRet = DevC oseDriver(0)) != DRV_NO ERROR) {

printf("Devd oseDriver RetWert = 9%d \n", sRet);

}
}

} /* end nmain*/

DevPutMessage() and DevGetM essage() uses a timeout value to force the driver
to wait for the completion of the function, until the given timeout period is
passed. This timeout should be used because the device needs also a period of
time to get a message from the DPM or to write a message to the DPM. This pe-
riod is normally very short (400 us up to 4 ms) but working in a while loop with
timeout equal to zero and try to put a message in such aloop will result in a bad
System response.

The given timeout from 100 ms is the maximum time the function will wait for
completion It will return immediately if the function is done.

The application is responsible for the reiteration of messages which could not be
send to the DEVICE.

How the device acts after power up or changes of the HOST ready state (e.g. shut
down the bus or stop data transmission) is normally configurable by the protocol
configuration.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 47

Another way to check if messages can be send or received is the use of the
DevCGet MBXSt at e() function. This function is used to determine the actual
state (DEVICE_MBX_FULL/EMPTY, HOST_MBX_FULL/EMPTY) of the
HOST and DEVICE mailbox. This the preferred way for a polling application.

Example 2:

/***

/* Mai nprogram

/***

int main(void)

{
unsi gned short usDevState, usHost State;
short sRet ;
MSG_STRUC t Recei ceMessage;
MSG_STRUC t SendMessage;
T B see exanple 1
/1 HOST and DEVI CE nmi |l box state
if ((sRet = DevGet MBXState(O,
&usHost St at e,
&usDevi ceState)) ! = DEV_NO ERROR) {
printf("DevGet MBXState RetWert = %d \n", sRet);
} else {
if (usHostState == HOST_MBX_FULL) {
/! Read devi ce nessage. nessage is available
if ((sRet = DevGet Message(O,
&t Recei veMessage,
OL)) != DRV_NO ERROR) {
printf("DevGet Message RetWert = %d \n", sRet);
} else {
/1 Process nessage
}
}
if (usDeviceState == DEVI CE_MBX_EMPTY) {
/1 Send mail box is enpty
if ((sRet = DevPut Message(O,
& SendMessage,
OL)) !'= DRV_NO ERROR) {
printf("DevPut Message RetWert = %d \n", sRet);
}
}
}
[see exanple 1

In this example, the application must create its own polling cycle an is responsi-
ble for freeing the processor for other applications.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 48

6.3.3 Process Data | mage Based Application

Applications which working with process data images (IO protocols) are using

the DevExchangel (), DevExchangel CErr () or DevE
changel Oex() function for the data transfer between the HOST and the
DEVICE.

ATTENTION: By using DevExchangel () it is not possible for master
devices to recognize the fault of a specific bus device. Only
global errorslike whole bus disruptions or communication
breaks to all configured device will be indicated by this
function.

To get specific device fault, the application must read the
"TaskState-Field", where device specific datas are lo-
cated.

Thismust be done after each call to DevExchangel () .

Example 1:

/***
/* Mai nprogram
/***
include "cifuser.h"
int main(void)
{

short sRet ;

unsi gned char abl CsendDat a[512] ;

unsi gned char abl ORecei veDat a[512] ;

/* _________________________________ */
/* Qpen the driver */
if ((sRet = DevQpenDriver(0)) != DRV_NO ERROR) {

printf("DevOpenDriver RetWert = 9%d \n", sRet);

/* _________________________________ */
/* Initialize board */
} elseif ((sRet = DevlnitBoard (O,
(voi d*) OxCA000000)) != DRV_NO ERROR) {
printf("DevlnitBoard RetWert = 9%d \n", sRet);

/* _________________________________ */
/* Signal board, application is running */
} else if ((sRet = DevSetHostState(O,
HOST_READY,
OL) !'= DRV_NO ERROR)) {
printf("DevSetHost State (HOST_READY) RetWert = 9%d \n", sRet);

} else {
while (...PROGRAM IS RUNNING . ..) {

/1 Application work........

/! Insert datas to the send data buffer

abl CSendDat a[0] = 11;
abl CSendDat a[1] = 22;
abl CSendDat a[2] = 33;

if ((sRet = DevExchangel O 0,
0,
si zeof (abl CSendDat a) ,
&abl CSendDat a[0] ,
0,

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 49

si zeof (abl ORecei veDat a) ,
&abl ORecei veDat a[0] ,
100L)) != DRV_NO ERROR) {

/1 Error during data exchange
printf("DevExchangelO RetWert = %d \n", sRet);
} else {
/1 Input data are stored in the abl ORecei veDat a
/1 Check for specific device errors (VERY | MPORTEND)
if ((sRet = DevGet TaskState(.......)) !'= DRV_NO ERROR) {
/1 Error by reading task state infornmation

} else {
/1 Check if one of the bus devices are faulty

/1 Process input data...........

}
}
} /* end while*/
/1 Cose the application

/* Signal board, application is not running */
if ((sRet = DevSetHost State(0,
HOST_NOT_READY,
OL)) !'= DRV_NO ERROR) {
printf("DevSetHost State Ret Wert = 9%d \n", sRet);
}

/* ________________________________ */
/* Free board */
if ((sRet = DevExitBoard (0)) !'= DRV_NO ERROR) {
printf("DevExitBoard RetWert = 9%d \n", sRet);
}

/* ________________________________ */
/* O ose driver */
if ((sRet = DevO oseDriver(0)) != DRV_NO ERROR) {
printf("Devd oseDriver RetWert = 9%d \n", sRet);
}
}

} /* end main*/

This example creates a send and a receive buffer. During the data exchange func-
tion call the data from the send buffer (ablOSendBuffer) are written to the DE-
VICE output process data area and the data from the input process data area are
read to the receive buffer (ablOReceiveBuffer).
As data buffers, there are fixed data area from 512 bytes for input and 512 bytes
for output data used. The real size of the process image can be determine by the
DevGet | nf o(GET_DEV_I NFO function. This function returns the DPM size
of the DEVICE as amultiple of 1024 Bytes (e.g. 2).

processimage size= ((bDpmSize* 1024) -1024) /2
From the whole size (2 * 1024 Byte) there must be subtract 1024 Byte, which is
the length of the last Kbytes (always reserved for message transfer and protocol
independent data). This gives a value of 1024 Bytes, which must be divided by
two (the size of the input and output process image is always equal.

The synchronization mode for the exchange function (e.g. uncontrolled and so
on) will be recognized by the DevExchangel () function and handled in the
right manner.

Read out state information for al connected bus devices when using a master de-
vice, to find out if on of the bus devices has a mafunction. This is done by the

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 50

use of DevGet TaskSt at e() . The function must be called after each call to
DevExchangel () to discover problems with particular devices (see aso
DevExchangel CErr ()).

The evaluation of the process data is up to the application. The exchange function
only copys a data area (one byte up to the whole data area) from and to the de-
vice. Where the data for a particular device is located in the O process image is
defined by the system configuration.

It is also possible to read only one byte from the image. But be aware, depending
on the sychronization mode (HOST Controlled, Buffered Data Transfer) , each
data exchange by the HOST will result in a complete buffer exchange on the DE-
VICE. To prevent needless data transfers of unchanged data between the DPM
and the internal data buffer of the DEVICE, we suggest to transfer as much data
as possible with one DevExchangel () call to get the best system perfor-
mence.

The DevExchangel O() function can be used to send and receive process data in
one call or in two calls. Where one call writes output data and the other on reads
input data. To prevent one of the functions, set the corresponding size parameter
equal to zero.

6.4 The Demo Application

For all operating systems we have created small demo applications which shows
the use of the drivers.

The application for DOS/Windows 3.xx shows how to work with a simple
ASCIIl protocol. The protocol definitions are located in the header file
DEMO.H.

For Windows 9x/NT we included our MSG_DBG program where the most of
the functions are realized. Also the possibility to check the message transfer
and to read and write process images are included.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 51

6.4.1 C-Example
Example for DOS, Windows 3.xx, Windows 9x, Windows NT:

The sample code demonstrate the initialization and the data transfer for a mes-
sage an for process image exchange. This source code is available from the driver
disk.

i ncl ude <cifuser. h>

/***

/* Mai nprogram

/***

int main(void)

{
unsi gned short usDevSt at e, usHost St at e;
short SRet;
MSG_STRUC t Message;

unsi gned char t 1 CSendDat a[512] ;
unsi gned char t1 ORecvDat a[512] ;

/* _________________________________ */
/* QOpen the driver */
if ((sRet = DevOpenDriver(0)) != DRV_NO ERROR) {

printf("DevOpenDriver RetWert = 9%d \n", sRet);

/* _________________________________ */
/* Initialize board */
} elseif ((sRet = DevlnitBoard (O,

(voi d*) OxCA000000)) != DRV_NO ERROR) ({

printf("DevlnitBoard RetWert = 9%d \n", sRet);
/* _________________________________ */
/* Signal board, application is running */
} else if ((sRet = DevSet HostState(O, /* Devi ceNunber */

HOST_READY, /* NMode */
OL) !'= DRV_NO ERROR)) {
printf("DevSet Host State (HOST_READY) RetWert = %d \n", sRet);

} else {

/*
/* Test Message transfer
/*
/* Build a nessage */

t Message. r x = 0x01;
t Message. t x = 0x10;
t Message. I n = 12;
t Message. nr = 1,
t Message. a = 0;
t Message. f = 0;
t Message. b = 17;
t Message. e = 0x00;
t Message. dat en[0] = 1;
t Message. dat en[1] = 2;
t Message. dat en[2] = 3;
t Message. dat en[3] = 4;

[* - - - - o - o . o . oo o 4o 4 -4 - e e e e e e e e e
/* Send a nmessage */
sRet = DevPut Message (O,
(MSG_STRUC *) &t Message,
5000L);
printf(" DevPut Message RetWert = %d \n", sRet);

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 52

/252
/* Receive a nessage */
sRet = DevGCet Message (O,

si zeof (t Message),

(MSG_STRUC *) & Message,

20000L);
printf(" DevGet Message RetWert = 9%d \n", sRet);
/*
/* Test for Exchangel O
/*

/* Wite test data to Send buffer */

t | OSendDat a. abSendDat a[0] = O;

t | OSendDat a. abSendDat a[1] = 1;

t | OSendDat a. abSendDat a[2] = 2;

t | OSendDat a. abSendDat a[3] = 3;

/252

/* Run Exchangel O */

sRet = DevExchangel O (O,
0, /* usSendOf f set */
4, /* usSendSi ze */
&t | CSendDat a, /* *pvSendDat a */
0, /* usRecei veOf fset */
4, /* usReceiveSize */
&t | ORecvDat a, /* *pvRecei veData */
100L); /* ul Ti meout */

printf("DevExchangel O RetWert = %d \n", sRet);

/* Signal board, application is not running
if ((sRet = DevSetHostState(O,
HOST_NOT_READY,
OL) !'= DRV_NO ERROR)) {
printf("DevSetHostState (HOST_NOT_READY) RetWert = %d \n", sRet);

J* o o o o o o o oo oo oo ool ol ool
/* C ose communi cation */

sRet = DevExitBoard(0);

printf("DevExitBoard Ret Wert = 9%d \n", sRet);

252
/* Cose Driver */

sRet = Devd oseDriver(0);

printf("Devd oseDriver RetWert = 9%d \n", sRet);

return O;

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Programming Instructions 53

6.4.2 C++-Example
Example for Windows 9x, Windows NT and Windows 2000:

This program named MSG_DBG.EXE (DrvTest.EXE) is a 32 bit program,
written with Microsoft Visual C++ V 6.x, usesthe MFC-Library for the
application window and the CIF32DLL.DLL to get connection to the device
driver.

The source code can be used for an example how to integrate our APl to a C++
application. All function are saved in own source files. The whole program is a
dialog based application with a menu line, from where the functions can be

activated.

m Device Driver Test Program - Board 0

File Board zelect Driverinfo Diriver function Data transfer Help

tMeszzage transfer
~MESSAGE OUTPUT —MESSAGE INPUT

R= [0 A o Fis ﬁ_ A ig_
T [F o Ti l15 F !D
MR [0 E [0 ME |0 T auto MR B i1D
LM :-D E :D LM |i:| E ;D
I Get cyclic GetMessage I Putcyclic Puttdezzage

All function will be called from the MSG_DBGDIg.C (DrvTestDIg.C) module.
Also the handling for the message monitor window and the data exchange win-
dows are located in thisfile.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 54

7 The Application Programming Interface

All drivers are working with the same interface. The following functions are
known by each driver:

Function group

Function

Description

Initialization

DevOpenDriver()

Links an application to the device driver

DevCloseDriver()

Closes a Link to the driver

DevinitBoard ()

Links an application to a board

DevExitBoard() Closes a Link to a board
Device control |DevReset() Reset a board

DevSetHostState() Sets/Clears the information bit for host is

running

DevTriggerWatchDog() Serves the watchdog function of a board
Message Data |DevPutMessage() Transfer a message to the board
Transfer DevGetMessage() Reads a message from a board

DevGetMBXState() Read the actual mailbox state

10 Data Transfer

DevExchangelO()

Put/Get 10 data from/to a board

DevExchangelOEX()

Put/Get 10 data from/to a COM module

DevExchangelOErr()

Put/Get 10 data from/to a board
including state information

DevReadSendData() Read back 10 data from the send area
Protocol DevPutTaskParameter() Writes the parameters for a
Information / communication task
Configuration DevGetTaskParameter() Reads the parameters from a
communication task
DevGetTaskState() Read all task states from a board
Device DevGetBoardinfo() Read global board information
Information DevGetinfo() Reads the various information from a
board
‘Other DevReadWriteDPMRaw() | Read/write to/from the last Kbytes of a

System Function
(Windows CE

only)

DevDownload()

Firmware/Configuration download

All definitions for data structures, function prototypes and definitions are located
in the user interface header file CIFUSER.H.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 55

7.1 Differences of the operating systems

7.1.1 Function Parameters

Please notice, that the interface for all drivers are the same. But there are
differences between the parameter which where used by the function library
and the device driverswhich also depends on the used operating system.

Driver

Operating System

Used Parameters

Unused parameters

Function library DOS *pDevAddress usDevNumber = 0
Windows 3.xx *pDevAddress usDevNumber = 0

Device driver Windows 9x usDevNumber (0..3) |*pvDevAddress
Windows NT usDevNumber (0..3) |*pvDevAddress
Windows 2000 usDevNumber (0..3) |*pvDevAddress

7.1.2 Timer Resolution

Please notice, that the timer resolution depends on the used operating sys-
tem. The use of timeout values lower than the given timer resolution will re-
sult in timeout periods between 0 thetimer resolution.

Timer resolution in milliseconds
54,95 ms (18.2 ticks per second)
54,95 ms (18.2 ticks per second)

Operating System
DOS
Windows 3.xx

Windows 9x 54,95 ms (18.2 ticks per second)
Windows NT 10 ms

Windows 2000 10 ms

Windows CE Platform dependent

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 56

7.2DevQpenDri ver ()

Description:

If an application wants to communicate with a board, it must call this function
first. This function checks if the device driver is available and opens alink to it.

Once an link is opened, all other functions can be used.
Cdl Devd oseDri ver () toclosethelink.

short DevQpenDrive (unsigned short usDevNunber);

Parameter:

type parameter description
unsigned short usDevNumber Always 0
Return values:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 57

7.3Devd oseDriver ()
Description:

Close an open link to the device driver. An application has to call this function
beforeit ends.

short Devd oseDriver (unsigned short usDevNunber);

Parameter :

type parameter description
unsigned short usDevNumber Always 0
Returns:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 58

7.4 DevGet Boar dl nf o()
Description:

With DevGet Boar dl nf o(), the user can read global information of all com-
munication boards the device driver knows.

The users interface offers the user a data structure which describes the board in-
formation data. The function copies the number of data, given in the parameter
usSi ze.

This function can be used after DevQpenDri ver () and before opening a
specific DEVICE with the Devl ni t Boar d() function.

short DevGet Boardinfo (unsigned short usDevNumber ,
unsi gned short usSi ze,
voi d *pvDat a) ;
Parameter:
type parameter description
unsigend short usDevNumber Always 0
unsigned short usSize Size of the users data buffer and length of
data to be read
void * pvData Pointer to the users data buffer
Data structure:
typedef struct tagBQARD | NFO[
unsi gned char abDri ver Version[16] ; /1 DRV version infornmation
struct {
unsi gned short usBoar dNunber; /1 DRV board nunber
unsi gned short usAvail abl e; /1 DRV board is avail able
unsi gned | ong ul Physi cal Address; // DRV physical DPM address
unsi gned short uslrgNunber; /1 DRV irq nunber

} tBoard [MAX_DEV_BQARDS];
} BOARD_| NFO

type parameter description
unsigned short |usNumber Always 0
unsigned short |usAvailable 0 = board not available

1 = board available

unsigned long ulPhysicalBoardAddress |Physical memory address

unsigned short |uslrgNumber Number of the hardware interrupt
0 = polling mode
3,4,5,6,7,9,10,11,12,14,15 for interrupt

Returns values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 59

By using the Windows
9%, Windows NT or
Windows 2000- device
driver, the physical
address is needless,
because the driver uses
configured addresses.
Set thisto NULL.

7.5Devl ni t Boar d()

Description:

After an application has opened alink to the device driver, it must call

Devl ni t Boar d() beforeit can start with the communication.

Devl ni t Boar d() tells the device driver that an application wants to work
with a defined board. The device driver checks if the board is physical available,
if the board works properly and setup up all the internal state flags for the ad-
dressed board.

The device driver worksin the following order:

Check if an communication board is known at the physical address, this is
done by checking an name entry in the DPM of the board.

Clearing the name entry in the boards DPM and write it back, to test if read
and write access is possible.

Check if the ready flag (RDY) of the boards operation system is set (1), which
indicates proper board state.

Check the boards watchdog function by reading the Host WAt chDog number
from the DPM and write it to the DevWat chDog cell of the DPM. The oper-
ating system has to read the number, increment it by one an write it back to
the Host WAt chDog cell.

Check if the board is configured to run with this device driver. This function
isonly used by the device drivers.

Some operation systems (MSDOS, Windows 3.xx) need the physical address of
the board. This address must be transmitted as a parameter. Please notice, that the
physical board address and the passed address have to be the samel.

short DevlnitBoard (unsigned short usDevNumber ,
voi d *pDevAddr ess) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
void *pDevAddress Pointer to the physical board address
Return values:
value description

DRV_NO_ERROR

0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 60

7.6 DevExi t Boar d()

Description:

If an application wants to end communication it has to call DevExi t Boar d() .
for each board which has been opened by a previous call to Devl ni t Boar d() .

These function frees all internal driver structures and unlink itself from the com-
munication board.

short DevExitBoard (unsigned short usDevNunber);

Parameter:

type parameter description
unsigned short usDevNumber Board number (0..3)
Return values:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 61

7.7 DevPut TaskPar anet er ()
Description:

This function hands over parameter to atask. Thisisonly possible, if the protocol
picks up the parameters of the DPM.

The parameters in the DPM will only be taken over from the tasks with the next

WARMSTART.
short DevPut TaskPar aneter (unsi gned short usDevNunber,
unsi gned short usNumber ,
unsi gned short usSi ze,
voi d *pvDat a) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
unsigned short usNumber Number of the parameter area (1..7)
unsigned short usSize Size of the parameter area and length of
data to be put
void* pvData Pointer to the users task parameters

Please notice, that you have to put the parameters in a structure according to the
protocol. The user has to build his own structure definition. The driver do not
check the parameters but it checks the length of the parameter structure. If the
length of the user data exceed the maximum length of the DPM area, the function
call failswith an error. Invalid parameters will be reported by the protocol.

Data structure:

typedef struct tagTASKPARAM {
unsi gned char abTaskPar anet er [64] ;

} TASKPARAM

Returns values:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 62

7.8 DevGet TaskPar anet er ()

Description:

This function reads the task parameter area from atask.

short DevGet TaskParaneter (

unsi gned short usDevNunber,
unsi gned short usNumnber,

unsi gned short usSi ze,
voi d *pvDat a) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
unsigned short usNumber Task number (1,2)
unsigned short usSize Size of the users data buffer and length of
data to be read
void* pvData Pointer to the users buffer

Please notice, that you get the parameters in a structure according to the protocol.
The user hasto build his own structure definition. The driver do not check the pa-
rameters but it checks the length of the parameter structure. If the length of the
user data exceed the maximum length of the DPM area, the function cal fails

with an error.

Data structure:

typedef struct tagTASKPARAM {

unsi gned char

abTaskPar anet er [64] ;

} TASKPARAM

Returns values:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 63

7.9 DevReset ()
Description:

This function provokes a reset on a communication board. The passed parameter
usMode switches a coldstart or awarmstart.

The amount of the timeout ul Ti meout depends on the used protocol and reset
mode. A coldstart needs a longer time then a warmstart because there will be
made a complete hardware check by the device operating system. Usually the
time for a coldstart will be between 3 and 10 seconds, a warmstart needs between
2 and 8 seconds.

short DevReset (unsi gned short usDevNunber,
unsi gned shortushbde,
unsigned |ong ul Ti neout) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
unsigned short usMode 2 = COLDSTART, new initializing
3 = WARMSTART, initializing with
parameters

4 = BOOTSTART, switches the board into
bootstrap loader mode. COM modules uses
this mode to store user parameters

unsigned long ulTimeout Timeout
Returns values:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 64

7.10 DevSet Host St at e()
Description:

The DevSet Host St at e() function is used, to signal the communication
board that a user application is running or not.

The utilization of the host state depends on the used communication protocol.
Some of the message based and the 1/0 based protocols uses this state to signal a
requesting station, no user application is running. 1/0O based protocol, such as In-
terBus S or PROFIBUS-DP, can use this state to shut down data transmission to
other stations.

On the most of the protocols, the use of the host state can be configured. A de-
tailed description can be found in the corresponding protocol manual.

short DevSet Host State (unsigned short usDevNunber,
unsi gned short usMbde,
unsi gned | ong ul Ti neout) ;

Parameter:

type parameter description

unsigned short usDevNumber Board number (0..3)
unsigned short usMode Function of the watchdog

0=HOST_NOT_READY
1 =HOST_READY

unsigned long ulTimeout timeout in milliseconds
0 = no timeout

The timeout parameter can be used by the user application to change the host
state and wait until the communication state of the board has also changed.

That means, if the host set HOST_READY and atimeout is configured, then the
function returns, if the communication state of the board is ready. Otherwise a
timeout occurs and the function returns with an error, which means, the board has
not reached communication ready state.

If the host set HOST _NOT_READY and atimeout is given, so the function will
return, if the communication state of the board reaches not ready. If atimeout oc-
curs, the communication state has not reached not ready and the function will re-
turn with an error.

If no timeout is given, only the used host state will be written to the communica-
tion board. No further check will be done.

The timeout period depends on the used bus system and varies between 100 ms
up to several seconds.

Return values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 65

7.11 Message Transfer Functions

Following functions are defined for message transfer:

« DevGet MBXSt at e()
+ DevPut Message()
« DevGet Message()

7.11.1 DevCet MBXSt at e()
Description:

This function reads the actual state of the host and device mailbox of a communi-
cation board.

Y ou can use this function for writing applications to poll the device without wait-
ing for device events.

short DevGet MBXState (unsi gned short usDevNumber,
unsi gned short *pusDevMBXSt at e,
unsi gned short *pusHost MBXSt at) ;

Parameter:

type parameter description

unsigned short usDevNumber Board number (0..3)

unsigned short *pusDevMBXState |Pointer to user buffer, to hold the device

mailbox state
0 = DEVICE_MBX_EMPTY
1=DEVICE_MBX_FULL

unsigned short *pusHostMBXState |Pointer to user buffer, to hold the host
mailbox state

0 =HOST_MBX_EMPTY
1=HOST_MBX_FULL

Returns:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 66

7.11.2 DevPut Message()
Description:

This function sends (transfers) a message to the communication board. The func-
tion copies the number of data, given in the length entry (msg.In) of the message
structure and the message header.

If no timeout (ul Ti meout = 0) is used, the function returns immediately. The
return code shows if the function was able to write the message to the device or
not.

If atimeout (ul Ti meout != 0) is used and the send mailbox of the device is
empty, the message is written to the mailbox and the function returns also imme-
diately. If the mailbox is full, the function will wait until the mailbox is free. If
this does not happen during the timeout duration, the function returns with an er-
ror code.

How the timeout is realized depends on the mode the DEVICE is configured.
Polling mode will run aloop in the driver while waiting the timeout duration

In interrupt mode the calling application will block to free the CPU for other

work..
short DevPut Message (unsi gned short usDevNunber,
M5G_STRUC *pt Message,
unsigned |ong ul Ti neout) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
MSG_STRUC* ptMessage Pointer to the message data
unisgned long ulTimeout Timeout in milliseconds
0 = no timeout

The message have to be compatible to the message format and it must be consis-
tent, according to the protocol. The structure of the standard message is located
in the users interface header file.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 67

M essage structure:

#pragma pack(1)
/1 max. length is 288 Bytes, max. nessage length is 255 + 8 Bytes
typedef struct tagMSG STRUC {

unsi gned char rx; /'l Receiver

unsi gned char tx; /1 Transmtter

unsi gned char I n; /1 Length

unsi gned char nr; /1 Nunber

unsi gned char a; /1 Answer

unsi gned char f; /1 Faul t

unsi gned char b; /1 Command

unsi gned char e; /1 Extension

unsi gned char data[255]; /1 Data

unsi gned char dummy[25] ; /1 for conpatibility with ol der

/'l versions
} MSG_STRUC
#pragma pack()

Notice, for more information about the message structure refer to the correspond-

ing manual.

Return values:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 68

7.11.3 DevGet Message()
Description:

This function reads a message out of the dual port memory (DPM) of a communi-
cation board and putsit into the data buffer that is given by the user. The function
checks if the message fits in the users data buffer. This is done by comparing the
parameter us Si ze with the length which is given in the message structure. If the
message doesn't fit, the function will fail and returns an error.

If no timeout (ul Ti meout = 0) is used, the function returns immediately. The
return code shows if the function was able to read a message from the device or
not.

If atimeout (ul Ti meout !'=0) isused and a message is available, the function
reads the message and returns also immediately. If no message is available, the
function will wait until a message is available. If this does not happen during the
timeout duration, the function returns with an error code.

How the timeout is realized depends on the mode the DEVICE is configured.
Polling mode will run aloop in the driver while waiting the timeout duration
In interrupt mode the calling application will blocked to free the CPU for other

work..
short DevGet Message (unsi gned short usDevNunber,
unsigned shortusSi ze,
M5G_STRUC *pt Message,
unsigned |ong ul Ti meout) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
unsigned short usSize Size of the users data buffer (maximum
length to be read)
MSG_STRUC* ptMessage Pointer to the users data area
unsigned long ulTimeout Timeout in milliseconds
0 = no timeout

Notice, the size of the user data buffer has to be large enough to hold all the data
of a message. The maximum length of a message can be taken from the message
structure in the users interface header file.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 69

M essage structure:

#pragma pack(1)
/1 max. length is 288 Bytes, max. nessage length is 255 + 8 Bytes
typedef struct tagMSG STRUC {

unsi gned char rx; /'l Receiver

unsi gned char tx; /1 Transmtter

unsi gned char I n; /1 Length

unsi gned char nr; /1 Nunber

unsi gned char a; /1 Answer

unsi gned char f; /1 Faul t

unsi gned char b; /1 Command

unsi gned char e; /1 Extension

unsi gned char data[255]; /1 Data

unsi gned char dummy[25] ; /1 for conpatibility with ol der

/'l versions
} MSG_STRUC
#pragma pack()

Returns values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 70

7.12 DevGet TaskSt at e()

Description:

This function reads one of the task state areas of a DEVICE. The data will be
transferred into the user data buffer. The function copies the number of data,

given in the parameter usSi ze.

short DevGet TaskState (unsigned short usDevNumber,
unsi gned short usNunber,
unsi gned short usSi ze,
voi d *pvDat a) ;

Parameter:

type parameter description

unsigned short usDevNumber Board number (0..3)

unsigned short usNumber Number of the state area (1,2)

unsigned short usSize Size of the users data buffer (maximum

length to be read)
void* pvData Pointer to the users data buffer

To handle the data, please use the structures given by the protocols.

Notice, the maximum size of the area given by the user can be taken from the task
parameter structure in the users interface header file.

Data structures:

typedef struct tagTASKSTATE {
abTaskSt at e[64] ;

unsi gned char
} TASKSTATE;

Returns:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 71

7.13DevCet I nfo()
Description:
This function reads the various information out of the DPM of a communication

board and the driver internal state information for a board. The information that
can beread are as followed:

+ Driver state information GET_DRIVER_INFO
Board version information GET_VERSION_INFO

- Board firmware information GET_FIRMWARE_INFO
Task information area GET_TASK_INFO

- Board operation system information GET_RCS_INFO
Device information area GET_DEV_INFO

+ DevicelOinformation GET_IO_INFO
Device |0 send data GET_|0_SEND_DATA

The function copies the number of data, given in the parameter usSi ze. Thein-
formation areas which are located in DPM of a board are defined in the device
documentation. For each area you can find a structure definition in the user inter-

face header file.

short DevGetlnfo (unsigned short usDevNumber,
unsi gned short us!| nf oAr ea,
unsi gned short usSi ze,
voi d *pvDat a) ;

Parameters:

type parameter description

unsigned short usDevNumber Board number (0..3)

unsigned short usinfoArea Defines which area to be read:

1 = GET_DRIVER_INFO
2 = GET_VERSION_INFO

3 = GET_FIRMWARE_INFO
4 = GET_TASK_INFO
5=GET_RCS_INFO

6 = GET_DEV_INFO

7 = GET_IO_INFO

8 = GET_IO_SEND_DATA

unsigned short usSize Size of the user data buffer and Number of
byte to read

void* pvData Pointer to the user data buffer

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming I nterface 72

Defined data structures;
/1 GETINFO i nformation definitions

#defi ne GET_DRI VER_| NFO 1
/1 Internal driver state information structure
typedef struct tagDRI VERI NFQ[

unsi gned | ong ul OpenCnt; /1 DevQpen() counter

unsi gned | ong ul d oseCnt; /1 Devd ose() counter (not used)

unsi gned | ong ul ReadCnt ; /1 Nunmber of DevGetMessage() comands
unsigned long ul WiteCnt; /1 Nunmber of DevPut Message() commands
unsi gned | ong ul | RQCnt; /1 Nurmber of board interrupts

unsi gned char bl ni t MsgFl ag; /1 Actual init state

unsi gned char bReadMsgFl ag; /1 Actual read mail box state

unsi gned char bWiteMsgFl ag; /1 Actual wite mail box state

unsi gned char blLast Functi on; /1 Last driver function

unsi gned char bWiteState; /1 Actual wite comand state

unsi gned char bReadSt at e; /1 Actual read command state

unsi gned char bHost Fl ags; /1 Actual host flags

unsi gned char bM/DevFl ags; /1 Actual device flags

unsi gned char bExI OFl ag; /1 Actual 10 flags

unsi gned | ong ul ExI OCnt ; /| DevExchangel () counter

} DRI VERI NFO

#define GET_VERSION INFO 2
/1 Serial nunmber and OGS versions information
typedef struct tagVERSI ONI NFO {

unsi gned | ong ul Dat e; /1 Manuf actor date (BCD coded)
unsi gned | ong ul Devi ceNo; /1 Device nunber (BCD coded)
unsi gned | ong ul Seri al No; /1 Serial number (BCD coded)
unsi gned | ong ul Reserved; /'l reserved

unsi gned char abPcCsNanme0O[4]; // Operating system code 0 (ASC 1)

unsi gned char abPcCsNanmel[4]; // Operating system code 1 (ASC 1)

unsi gned char abPcCsNanme2[4]; // Operating system code 2 (ASC 1)

unsi gned char abCem dentifier[4]; // CEMreserved (ASCI 1)
} VERSI ONI NFO,

#define GET_FI RMMARE_INFO 3
/1 Device firmare infornation
typedef struct tagFl RMMREI NFO {
unsi gned char abFi r mvar eNare[16] ; /1 Firmware nane (ASC 1)
unsi gned char abFi rmnar eVersion[16]; // Firmnare version (ASCI 1)
} FI RMMAREI NFO

#define GET_TASK_| NFO 4
/1 Device task information
typedef struct tagTASKI NFO {

struct {
unsi gned char abTaskNane[8] ; /'l Tasknane (ASCI 1)
unsi gned short usTaskVersi on; /1 Task version (nurber)
unsi gned char bTaskConditi on; /1 Actual task state
unsi gned char abreserved[5]; Il reserved
} tTasklinfo [7];
} TASKI NFG,

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 73

#def i ne GET_RCS_|I NFO 5
/1 Device operating system (RCS) infornation
typedef struct tagRCSI NFO {

unsi gned short usRcsVersi on; /| Device RCS version (nunber)
unsi gned char bRcsError; // Operating systemerrors
unsi gned char bHost Wat chDog; /'l Host watchdog val ue
unsi gned char bDevWat chDog; /| Device watchdog val ue
unsi gned char bSegnent Count ; /1 RCS segment free counter
unsi gned char bDevi ceAdr ess; /'l RCS device base address
unsi gned char bDriver Type; /1 RCS driver type
} RCSI NFO
#defi ne GET_DEV_|I NFO 6

/1 Device description
typedef struct tagDEVI NFO {

unsi gned char bDpnSi ze; /1 Device DPMsize (2,8..) (nunber)
unsi gned char bDevType; /] Device type (nurber)
unsi gned char bDevModel ; /| Device nodel (nurber)
unsi gned char abDevldentifier[3];// Device identification (ASCI 1)
} DEVI NFQ
#define GET_I O I NFO 7

/1 Device exchange 10 information

typedef struct tagl O NFO {
unsi gned char bConBi t; /1 Actual state of the COMbit (0,1)
unsi gned char bl CExchangeMbde; // Actual data exchange nmode (0..5)
unsi gned | ong ul | OExchangeCnt; // Exchange | O counter

} 1O NFG,

Return values:

value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 74

7.14DevTri gger Wat chdog()
Description:

The DevTriggerWatchdog() command can be used to check the device operating
system for normal operation.

The parameter function determines what action on the boards watchdog should
be done (WATCHDOG_START, WATCHDOG _STOP).

The function reads the Pc\WWat chDog cell and write it to the Dev\Wat chDog cell
of the DPM.

With writing a number unequal to zero in the DevWat chDog cell of the DPM,
the watchdog function of the board is activated. Since the watchdog is activated,
the application must trigger the watchdog within the time which is defined in the
protocol s database.

The application must not generate a watchdog counter, because the operating sys-
tem of the board increments the watchdog counter. Thisis done by giving an une-
gual number (1) in the Pc\Wat chDog. The trigger function take this number and
write it to the Dev\Wat chDog cell. If the operating system reads a number une-
gual to zero from the Dev\Wat chDog then it increments the number and write it
back to the PcWat chDog cell. Every time the function is called, it returns the
actual watchdog counter to the application. So, if the application reads the same
counter value twice or more after the call to the trigger function, the board failed.

To stop the watchdog, the function writes a 0 to the Dev\Wat chDog cell. After
this the boards operating system stops the watchdog checking.

short DevTri gger Wat chDog (unsi gned short usDevNunber,
unsi gned short usFuncti on,
unsi gned short *usDevWat chDog) ;

Parameter:

type parameter description

unsigned short usDevNumber Board number (0..3)
unsigned short usFunction Function of the watchdog

0 =WATCHDOG_STOP
1 =WATCHDOG_START

unsigned short* usDevWatchDog Pointer to a user buffer, where the
watchdog counter value can be written to

Return values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming I nterface 75

7.15 Process Data Transfer Functions

Following functions are defined for process data transfer:

DevExchangel ()

Isthe standard function for the data transfer of process image datas. Only gen-
eral bus errors are detected by this function. To get error information about
specific devices, the function DevGetTaskState() must be used after each call
to DevExchangel () to read thetask information field.

DevExchangel Cerr ()

Is an extension of the DevExchangel () function. This function contains
the COMSTATE structure as an parameter, where device specific datas will
be transfered by each call to the function. No additional call of DevGetTask-
State() are required.

DevExchangel CEx()
This function isaspecial function to work with COM modules.

DevReadSendDat a()
This function can be used to read bach the send process image from a device

ATTENTION: By using DevExchangel () it is not possible for master
devices to recognize the fault of a specific bus device. Only
global errorslike whole bus disruptions or communication
breaks to all configured device will be indicated by this
function.

To get specific device fault, the application must read the
"TaskState-Field", where device specific datas are
located.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 76

7.15.1 DevExchangel ()
Description:

The DevExchangel () function is used, to send 1/O data to and receive 1/O
data from a communication board. This function is able to send and receive |/O
data at once. If one of the size parameter is set to zero, no action will be taken for
the corresponding function. Thismeans, if usSendSi ze is set to zero, send data
will not be written to the board. If usRecei veSi ze is set to zero, receive data
will not be read from the board.

The user can wait until a complete action is done, by the use of ul Ti neout . If
an timeout occurs, the function will return with an error. If no timeout is given,
the function will return immediately.

The function will automatically recognize the synchronization mode of the proc-
ess datatransfer and handle it in the defined way.

ATTENTION: Only general buserrorsaredetected by thisfunction.Use

DevGetTaskState() after each call to DevExchangel O() to
read thetask information field and to check device specific
errors.

short DevExchangel O (unsi gned short usDevNumber,
unsi gned short usSendO f set,
unsi gned short usSendSi ze,

voi d *pvSendDat a,
unsi gned short usRecei veOff set,
unsi gned short usRecei veSi ze,

voi d *pvRecei veDat a,
unsi gned | ong ul Ti neout) ;

Parameter:

type parameter description

unsigned short usDevNumber Board number (0..3)

unsigned short usSendOffset Byte offset in the send IO data area of the
communication board

unsigned short usSendSize Length of the send 10 data

void* pvSendData Pointer to the user send data buffer

unsigned short usReceiveOffset Byte offset in the receive 10 data area of
the communication board

unsigned short usReceiveSize Length of the send 10 data

void* pvReceiveData Pointer to the user read data buffer

unsigned long ulTimeout timeout in milliseconds
0 = no timeout

Return values:

value description

DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 77

7.15.2 DevExchangel CErr ()
Description:

DevExchangel CErr () isan extension of the DevExchangel () function.
The handling for sending and receiving /O data acts in the same way like in the
DevExchangel () function.

Furthermore, the function has an additional parameter which holds state informa-
tion according to the configured bus devices. This information is only available
on master DEVICEs (PROFIBUS-DP master, InterBus-S master etc.).

Normally the DEVICE will set its communication ready bit (COM flag) if at least
one of the configured bus devices is connected and running properly. If more
modules are configured, the COM flag can not signal an error for a specific
device. The COM flag is only able to indicate global failures like whole bus dis-
ruptions or communication breaks to all configured devices. In this case the state
field information can be used to detect errors of a specific bus device.

Please check, if the DEVICE firmwar e of the master device supportsthe sev-
eral modes of statefield handling.

short DevExchangel OErr(unsi gned short usDevNunber,
unsi gned short usSendO f set,
unsi gned short usSendSi ze,

voi d *pvSendDat a,
unsi gned short usRecei veOf set,

unsi gned short usReceiveSi ze,

voi d *pvRecei veDat a,
COVSTATE *pt St at e,
unsi gned | ong ul Ti neout) ;

Parameter:

type parameter description

unsigned short usDevNumber Board number (0..3)

unsigned short usSendOffset Byte offset in the send 10 data area of the

communication board
unsigned short usSendSize Length of the send 10 data
void* pvSendData Pointer to the user send data buffer

unsigned short

usReceiveOffset

Byte offset in the receive 10 data area of
the communication board

unsigned short

usReceiveSize

Length of the send 10 data

void* pvReceiveData Pointer to the user read data buffer
COMSTATE ptComState Pointer to the user COMSTATE buffer
unsigned long ulTimeout timeout in milliseconds

0 = no timeout

Return values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming I nterface 78

COMSTATE structure definition:

/1 Communi cation state field structure
typedef struct tagCOMSTATE {

GLD16U usMode; /1 Actual node

GLD16U usSt at eFl ag; /1 State flag

GLD8U abSt at e[64] ; // State area
} COVBTATE;

The COMSTATE structure can be transferred on each function call.

« usMaode Defines the actual configured transfer mode of the state field
OxFF = Not supported by the firmware
3 = Cyclic transfer of the state field including the state error
flag (usStateFl ag)
4 = Event driven transfer of the state field including the
usStateFlag

« usStateFlag 0= No entrysin the state field (abState]])
1 = Entrysin the state available

« abState]64] Buffer of the actual state field. Refer to the protocol interface
manual for a description of the state buffer.

Example:

/1 Read process inmage and state field information
if ((sRet = DevExchangel OErr(usBoar dNunber,
0,
0,
NULL,
usReadCf f set,
usReadSi ze,
&abl OReadDat a[0] ,
&t Contt at e,
100L)) == DRV_NO ERROR) {

/] Check state field transfer node
switch (tConState. ushvde) {

case STATE_MCDE_3:
/1 Check state field usStateFlag signals entrys
if (tConState.usStateFlag != 0) {
/1 Show COM errors
}

br eak;

case STATE_MCDE_4:
/1 Check state field usStateFlag signals new entrys
if (tConState.usStateFlag != 0) {
/1 Show COM errors
}

br eak;

defaul t:
/] State node unknown or not i npl enented
/! Read the task state field by yourself
if ((sRet = DevGetTaskState(....)) != DRV_NO ERROR) {
/1 Error by reading the task state
}

br eak;

} /* end switch */

}

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 79

7.15.3 DevExchangel OEx()
Description:

The DevExchangel OEx() function is created for the use with COM mod-
ules. It works in the same way like the DevExchangel () function, except the
data transfer mode must be defined by the application.

COM modules are normally not able to signal the actua data transfer modes to

the device driver, which means the driver can not decide how to act with the

DPM. Therefore the DevExchangel OEx() function gets a new parameter
which tells the driver how to handle the DPM

The configuration of the COM modules are done by writing WARMSTRART pa-

rameters to the board. During configuration, the user defines the 10 data transfer

mode. The configured mode must be given the DevExchangel CEx() f unc-

t i on to make surethe driver handlesthe DPM in the right manner.

short DevExchangel OEx (unsi gned short usDevNumber

unsi gned short usMbde,

unsi gned short usSendO f set,
unsi gned short usSendSi ze,

voi d *pvSendDat a,
unsi gned short usRecei veOf f set,
unsi gned short usRecei veSi ze,
voi d *pvRecei veDat a,

unsi gned | ong ul Ti neout) ;

Parameter:

type parameter description

unsigned short usDevNumber Board number (0..3)

unsigned short usMode Data transfer mode (0..4)

unsigned short usSendOffset Byte offset in the send 10 data area of the
communication board

unsigned short usSendSize Length of the send 10 data

void* pvSendData Pointer to the user send data buffer

unsigned short usReceiveOffset Byte offset in the receive 10 data area of
the communication board

unsigned short usReceiveSize Length of the send 10 data

void* pvReceiveData Pointer to the user read data buffer

unsigned long ulTimeout timeout in milliseconds
0 = no timeout

Return values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 80

7.15.4 DevReadSendDat a()
Description:

The DevReadSendDat a() function is used, to read back send data which are
written to send data area with the function DevExchangel () .

This function can be used by applications to update the user input after the data
are successfully written to the communication board.

short DevReadSendData (unsigned short usDevNunber,
unsi gned short usOffset,
unsi gned short usSi ze,

voi d *pvSendDat a) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
unsigned short usOffset Byte offset in the send 10 data area of the

communication board

unsigned short usSize Length of the send 10 data to be read
void* pvData Pointer to the user data buffer
Return values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 81

7.16 DevReadWriteDPM Raw()
Description:

The DevReadW it eDPMRaw() function can be used to read and write every
byte in the last Kbyte of the DPM except the last two bytes. It is up to the user to
protect important datain DPM against overwriting.

short DevReadW it eDPMRaw (unsi gned short usDevNunber,
unsi gned short usMode,
unsi gned short usCOf fset,
unsi gned short usSize,

voi d *pvSendDat a) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
unsigned short usMode 1 = PARAMETER_READ
2 = PARAMETER_WRITE
unsigned short usOffset Byte offset in DPM of the communication
board (0..1022)
unsigned short usSize Length of the send 10 data to be read
void* pvData Pointer to the user data buffer

The definition structure definition RAWDATA can be used as a data buffer
definition.

/1 Device raw data structure
typedef struct tagRAWATA {

unsi gned char abRawDat a[1022] ; /* Definition of the last kByte
} RAVDATA;
Return values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

The Application Programming Interface 82

7.17 DevDownload()
Description:

The DevDownl oad() function can be used to either load a firmware or con-
figuration file to the hardware.

The whole data transfer will be executed in the download function. Therefore, the
function loads the file into memory and transfers it from the memory to the hard-
ware. The transfer function is running in a "loop", so no other activity during a
download is possible.

Firmware files must have a correct file extension, which is check in the download
function. Configuration files will be check by the operating system and rejected,
if the database name is not known on the hardware.

short DevDownl oad(unsi gned short usDevNunber,
unsi gned short usMode,
unsi gned char *pszFi | eNane,

DWORD *pdwByt es) ;
Parameter:
type parameter description
unsigned short usDevNumber Board number (0..3)
unsigned short usMode 1 = FIRMWARE_DOWNLOAD
2 = CONFIGURATION_DOWNLOAD
unsigned char* pszFilename Pointer to the filename with or without a
complete path description. This must be a
multibyte string zero terminated.
DWORD* pdwBytes Pointer to a dword value which receives the
number of bytes transfered to the hardware
Return values:
value description
DRV_NO_ERROR 0 = No error

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Error Numbers

83

8 Error Numbers

8.1List of Error Numbers

The column hint shows if there are additional information. If 'Y es' then see chap-

ter hintsto error numbers, which is the next chapter.

value |parameter description hint
0|DRV_NO_ERROR no error
-1|DRV_BOARD_NOT_INITIALIZED DRIVER Board not initialized yes
-2|DRV_INIT_STATE_ERROR DRIVER Error in internal init state
-3|DRV_READ_STATE_ERROR DRIVER Error in internal read state
-4|DRV_CMD_ACTIVE DR_IVER Command on this channel is
activ
-5|DRV_PARAMETER_UNKNOWN DRIVER Unknown parameter in
function occured
-6|DRV_WRONG_DRIVER_VERSION DRIVER Version is incompatible with |yes
DLL
-7|DRV_PCI_SET_CONFIG_MODE DRIVER Error during PCI set run
mode
-8|DRV_PCI_READ_DPM_LENGTH DRIVER Could not read PCI dual port
memory length
-9|DRV_PCI_SET_RUN_MODE DRIVER Error during PCI set run
mode
-10|DRV_DEV_DPM_ACCESS ERROR DEVICE Dual port ram not accessable |yes
(board not found)
-11/DRV_DEV_NOT_READY DEVICE Not ready (ready flag failed) |yes
-12|DRV_DEV_NOT_RUNNING DEVICE Not running (running flag yes
failed)
-13|DRV_DEV_WATCHDOG_FAILED DEVICE Watchdog test failed
-14|DRV_DEV_OS_VERSION_ERROR DEVICE Signals wrong OS version yes
-15|DRV_DEV_SYSERR DEVICE Error in dual port flags
-16|DRV_DEV_MAILBOX_FULL DEVICE Send mailbox is full
-17|DRV_DEV_PUT_TIMEOUT DEVICE PutMessage timeout yes
-18|DRV_DEV_GET_TIMEOUT DEVICE GetMessage timeout yes
-19|DRV_DEV_GET_NO_MESSAGE DEVICE No message available
-20|DRV_DEV_RESET_TIMEOUT DEVICE RESET command timeout yes
-21|DRV_DEV_NO_COM_FLAG DEVICE COM-flag not set yes
-22|DRV_DEV_EXCHANGE_FAILED DEVICE IO data exchange failed
-23|DRV_DEV_EXCHANGE_TIMEOUT DEVICE IO data exchange timeout yes
-24|DRV_DEV_COM_MODE_UNKNOWN |DEVICE IO data mode unknown
-25|DRV_DEV_FUNCTION_FAILED DEVICE Function call failed
-26|DRV_DEV_DPMSIZE_MISMATCH DEVICE DPM size differs from
configuration
-27|DRV_DEV_STATE_MODE_UNKNOWN |DEVICE State mode unknown
|value |parameter |description |hint |

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Error Numbers 84
value |parameter description hint
-30|DRV_USR_OPEN_ERROR USER Driver not opened (device yes
driver not loaded)
-31|DRV_USR_INIT_DRV_ERROR USER Can't connect with device
-32|DRV_USR_NOT_INITIALIZED USER Board not initialized
(DevinitBoard not called)
-33|DRV_USR_COMM_ERR USER IOCTRL function failed
-34|DRV_USR_DEV_NUMBER_INVALID |USER Parameter DeviceNumber
invalid
-35({DRV_USR_INFO_AREA_INVALID USER Parameter InfoArea unknown
-36|DRV_USR_NUMBER_INVALID USER Parameter Number invalid
-37|DRV_USR_MODE_INVALID USER Parameter Mode invalid
-38|DRV_USR_MSG_BUF_NULL_PTR USER NULL pointer assignment
-39|DRV_USR_MSG_BUF_TOO_SHORT |USER Message buffer too short
-40|DRV_USR_SIZE_INVALID USER Parameter Size invalid
-42|DRV_USR_SIZE_ZERO USER Parameter Size with zero
length
-43|DRV_USR_SIZE_TOO_LONG USER Parameter Size too long
-44|DRV_USR_DEV_PTR_NULL USER Device address null pointer
-45|DRV_USR_BUF_PTR_NULL USER Pointer to buffer is a null
pointer
-46|DRV_USR_SENDSIZE TOO_LONG USER Parameter SendSize too long
-47|DRV_USR_RECVSIZE_TOO_LONG |USER Parameter ReceiveSize too
long
-48|DRV_USR_SENDBUF_PTR_NULL USER Pointer to send buffer is a null
pointer
-49|DRV_USR_RECVBUF_PTR_NULL USER Pointer to receive buffer is a
null pointer
-100|DRV_USR_FILE_OPEN_FAILED USER file not opend
-101|DRV_USR_FILE_SIZE_ZERO USER file size zero
-102|DRV_USR_FILE_NO_MEMORY USER not enough memory to load file
-103|DRV_USR_FILE_READ_FAILED USER file read failed
-104|DRV_USR_INVALID_FILETYPE USER file type invalid
-105|DRV_USR_FILENAME_INVALID USER file name not valid
>=1000|RCS_ERROR Board operation system errors will be
passed with this offset (e.g. error 1234
means RCS error 234). Only if a
ready fault occured during board
initialization.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Error Numbers 85

8.2 Hintsto Error Numbers

This chapter contains more informations about possible reasons to certain error
numbers.

Error: -1

The communication board is not initialized by the driver.

No or wrong configuration found for the given board.

- Check the driver configuration

- Driver function used without calling DevOpenDriver() first

Error: -6

The device driver version does not corresponds to the driver DLL version. From
version V1.200 the internal command structure between DLL and driver has
changed.

- Make sure to use the same version of the device driver and the driver DLL

Error: -10

Dual ported RAM (DPM) not accessible / no hardware found.

This error occurs, when the driver is not able to read or write to the DPM

- Check the BIOS setting of the PC

- Memory address conflict with other PC components, try another memory
address

- Check the driver configuration for this board

- Check the jJumper setting of the board

Error: -11
Board is not ready.
Thisisagenera error, the board has a hardware malfunction.

Error: -12
At least one task is not initialized. The board is ready but not all tasks are run-
ning.

- No data base is loaded into the device
- Wrong parameter that causes that a task can't initialize. Use ComPro menu
Online-task-version.

Error: -14

No license code found on the communication board.

- Device has no license for the used operating system or customer software.
- No firmware or no data base on the device loaded.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Error Numbers 86

Error: -17

No message could be send during the timeout period given in the

DevPut Message() function.

- Using device interrupts

Wrong or no interrupt selected. Check interrupt on the device and in driver regis-
tration. They have to be the same!. Interrupt already used by an other PC compo-
nent.

- Device internal segment buffer full

Put Message() function not possible, because all segments on the device arein
use. This error occurs, when only Put Message() is used but not Get Mes-
sage() .

- HOST flag not set for the device

No messages are taken by the device. Use DevSetHostState() to signal aboard an
application is available.

Error: -18

No message received during the timeout period given in the

DevGet Message() function.

- Using device interrupts

Wrong or no interrupt selected. Check interrupt on the device and in driver regis-
tration. They have to be the same!. Interrupt already used by an other PC compo-
nent.

- The used protocol on the device needs longer than the timeout period given in
the DevGet Message() function

Error: -20

The device needs longer than the timeout period given in the DevReset ()
function

- Using device interrupts

This error occurs when for example interrupt 9 is set in the driver registration but
no or awrong interrupt is jumpered on the device (=device in polimode).
Interrupt already used by an other PC component.

- The timeout period can differ between fieldbus protocols

Error: -21

The device can not reach communication state.
- Device not connected to the fieldbus

- No station found on the fieldbus

- Wrong configuration on the device

Error: -23

The device needs longer than the timeout period given in the

DevExchangel () function.

- Using device interrupts

Wrong or no interrupt selected. Check interrupt on the device and in driver regis-
tration. They have to be the same!. Interrupt already used by an other PC
component.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Error Numbers 87

Error: -30

The device driver could not be opened.

- Devicedriver not installed

- Wrong parameters in the driver configuration

If the driver finds invalid parameters for a communication board and no other
boards with valid parameters are available, the driver will not be loaded.

Error: -33

A driver function could not be called. Thisis an internal error between the device
driver and the DLL.

- Make sureto use adevice driver and a DLL with the same version.

- An incompatible old driver DLL is used.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Developement Environments 88

9 Development Environments

This chapter includes information about various development environments and
tools.

It is not possible for us to check our software with all tools from all companies,
which offer such tools. Aslong as atool can work with DLLs (Dynamic Link Li-
braries) it should be possible to integrate our APl into applications created with
such tools.

For the development of our software, we only using Micorsoft development tools
and wetry to use only ANSI-C functionalitis.

So, if you encounter problems to access our API (Libs and DLLs) from your ap-
plication, there are some ways to solve this problems.

On the 16 bit platform DOSWindows3.xx and a C software development tool
from another manufacturer you should be able to recompile our software with
your C development tools.

On the 32 hit platform Windows 9x, Windows NT and Windows 2000 you have
several choices to access our API. In general you have to use our interface DLL
(CIF32DLL.DLL) and there are two ways to accessing a 32 bit DLL by an
application.The possible ways are described in the following chapter.

Binding of dynamic link libraries:
On the Windows platform, there are two ways to connect (bind) a DLL to an ap-
plication

Thefirst oneis static (early) binding of a DLL. Thisis done by linking the DLL
definition file xxxxx.LIB to an application. As a result, the DLL will be loaded
during the program startup sequence. If the DLL is not available, the program
will be aborted with the error message "Could not found dynamic link library
XXXXXX.DLL".

Some development tools are not able to use the definition files created by a Mi-
crosoft compiler. Therefore it is maybe possible to use the second way for bind-
ing aDLL to an application.

This way is named dynamic (late) binding of a DLL. Dynamic binding is done
by loading the DLL during program runtime. Therefor, the Windows API offers
the function 'LoadLibrary()' and 'FreeLibrary()'.

'‘LoadLibrary()" will load the DLL into system memory and returns a handle to the
given DLL. Only the file name of the DLL as an ASCII string is needed to do
this. FreeLibrary() must be used to release the resources of an prevously loaded
DLL.

The next step is to get the procedure address of the wanted DLL function. This
can be done by the 'GetProcAddress()' function. This function takes the function
name as an ASCII string. After reading the procedure address from the DLL, the
function can be called from an application.Only a proper function declaration in
the application is required to call this function.

The advantage by doing this is the following, an application can start without the
existence of the DLL, because the application can determine when to load the
DLL.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Developement Environments 89

Example of using dynamic Linking of DLLSs

The following example will show you the modification in CIFUSER.H for the
use with the Borland C-Builder V1.0.

Example: Modification for cifuser.h to call DevQpenDri ver ()

e e
/1 Header file
/'l Function prototype definition
extern "C' {

typedef short APIENTRY (*FDevQpenDriver) (unsi gned short usDevNumber)
..... etc.

[e e e
/1 Source file

/1 Pointer definition

FDevQpenDri ver DevOpenDri ver =NULL;

/1 Macro for GetProcAddress function
#defi ne DLLExport (DLL, Nane) (Nanme=F##Nanme(CGet ProcAddress(hDLL, #Nane)))

With this macro it is possible to easily export afunction from adriver DLL.

/1 Application

hDLL=LoadLi brary("C FxxDLL"); I/l Get a handle to the driver DLL

DLLExport (hDLL, DevOpenbDriver); // Get a function procedure address
/1 by using the macro

// O use the standard way to get the function address without a macro
DevOpenDri ver = (FDevOpenDri ver) Get ProcAddress(hDLL, "DevOpenDriver");

/1 Call the driver function
sRet = DevQpenDriver(usDevNumber);

Make sure to check all return values and pointers from each function. Otherwise
it is possible to get "general protection faults' when calling functions with un-
loaded pointers.

This will show you only one example how to use LoadLi brary() and Get -
Pr ocAddr ess() . Please refer to the manuals of your development environ-
ment how to use dynamic binding of DLLSs.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Developement Environments 90

9.1 Microsoft Software Development Tools

9.1.1 Visual Basic 3.0, 4.0 (16 bit)

It is possible to use the device driver with Visual Basic. Therefore we created a
definition file CIFDEV.BAS. This file describes the function definitions and the
data structures for the driver function.

9.1.2 Microsoft Visual Basic 4.0, 5.0 (32 bit)

32 bit Visual Basic uses another structure definition. This defines all elements of
a structure as WORD aligned. This means each element of a data structure starts
on an even memory address. If there is a BY TE followed by a WORD element,
the structure will be extended by adummy BY TE.

All data structures in the device driver DLL are BYTE aigned. There is no data
extension for structures.

Therefore not al of the driver defined data structures can be used in a Visula
Bassic application like defined in the CIFDEV.BASfile. But all structures can be
read from the driver by using byte arrays.

At the moment, it is up to the user to convert the byte arrays into the driver data
structures given in CIFDEV .BAS.

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Devel opement Environments 91

9.2 Borland Softwar e Development Tools

For the most of the Borland development toals, it is not possible to statically link
DLLs created by the Microsoft C compiler. Furthermore some of the definitions
in our CIFUSER.H file are also not known by the Borland tools

The following points will describe what to do if you encounter problems by using
the CIFUSER.H file and by binding our DLL.

9.2.1 Borland C 5.0, Borland C-Builder V1.0
1. Convert the Microsoft DLL into a Borland DL L

Borland C offers a conversion program to convert Microsoft DLL into definition
filewhich is excepted by the Borland C compiler.

The program is named "IMPLIB.EXE and is aso able to convert our API-DLL
into a Borland accaptable definition file (xxxx.LI1B).

Please refer to the corresponding Borland manual how to use thistool.

Notice:

This program should be used from the Borland C 5.0 compiler or later and the
version of "IMPLIB.EXE" should be equal or greater 2.0.140.1.

Example use of "IMPLIB.EXE" to convert the driver DLL to aBorland DL
Usage: IMPLIB NewBorland.lib CIF32DLL.DLL

2. Definition for use of our functionswith C++

#i fdef __cpl uspl us
extern "C' {
#endif /* _cplusplus */

#i fdef __cpl uspl us

}
#endif /* _cplusplus */

Borland defines ___cplusplus as _cplusplus with only one underline.

3. Prototype definition for DLL functionsin CIFUSER.H

short API ENTRY DevQpenDri ver (unsigned short usDevNunber);

APIENTRY is not known by Borland. APIENTRY is defined as __stdcall which
describes the calling convention of the DLL function.

Y ou can easily change the definition by including definition line on the top of the
the header file or outside of the header file which can look like:

#def i ne API ENTRY
(This will define APIENTRY as not hi ng)

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Devel opement Environments 92

9.2.2 Borland Delphi

Delphi is the graphical development environment from Borland and works with
Pascal. Also with Borland Delphi, you have the choice to either static or dynamic
binding of aDLL.

Notice:
Make sure to use standard calling convention (__stdcall) when defining the
driver functions.

1. Static binding

Functi on DevOpenDri ver (usDevNunber: word): snallint; stdcall; external
' Cl F32DLL. DLL' ;

Function Devl nit Boar d(usDevNunber: word; pDevAdress : pointer):snallint;
stdcall; external 'ClIF32DLL.DLL';

Function Devd oseDriver (usDevNunber: word): snallint; stdcall;
external ' Cl F32DLL. DLL' ;

Functi on DevExit Board(usDevNunber: word): snallint; stdcall;
external ' Cl F32DLL. DLL' ;

Function DevGet Message(usDevNunber: word; size : word;var ptMessage :
T _Msg_Struct; tine_out : longint): smallint; stdcall; external
" Cl F32DLL. DLL' ;

Functi on DevPut Message(usDevNunber: word;var ptMessage : T_Msg_Struct;

time_out : longint): smallint; stdcall; external 'ClF32DLL.DLL';
type
T_Msg_Struct = record // packed
rx . byte;
tx . byte;
I'n . byte;
nr . byte;
a . byte;
f . byte;
b . byte;
e . byte;

data : array[1l..255] of byte;
dummy : array[1l..25] of byte;
end;
var

Msg_Struct : T_Msg_Struct;

procedure Test;

var
erg : integer;
begi n
erg: = DevQpenDriver(0);
erg: = DevlnitBoard(0, NIL);
erg: = DevPut Message(0, Msg_Struct, 100);
erg: = DevGet Message(0, si zeof (Msg_Struct), Msg_Struct, 100);
erg: = DevExi t Board(0);
erg: = Devd oseDriver(0);
end;

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

Developement Environments 93

2. Dynamic binding
Create atype definition for the function you want to call from the API.

Example: DevOpenDriver ():
type tDevOpenDriver(usDevNumber: word): smallint; stdcall;

Load the DLL with LoadLibrary()/FreeLibrary and read the procedure address
from the function by the call to GetProcAddress();

Pragam example:
hHandle:=LoadLibrary("CIF32DLL.DLL");
pt:=GetProcAddress(hHandle, "DevOpenDriver");
(tDevOpenDriver)pt.(0);

FreeLibrary(hHandle);

9.2.3 National Instruments CVI LabWindows 4.1

CVI Lab Windows supports the development of Microsoft C compatible pro-
grams. So the library file which comes with our API-DLL can be used directly.
Only the definition APIENTRY in our CIFUSER.H file is not included in the
Microsoft C development enviroment.

Include the following line into your source code befor including the CIFUSER.H
file:
#define APIENTRY __stdcall

Copyright * Hilscher Gesellschaft fir Systemautomation mbH * Hotline/Support: +49 (6190) 9907-99 * Dd:DevDrv#9E

