
Using Modbus I/O Servers (DSC and RT Modules)
Modbus is an application-level messaging protocol that provides client-server communication between devices
connected on different types of buses or networks. You can create a Modbus or Modbus Slave I/O server to read data
from or write data to Modbus devices. For example, you can create a Modbus Slave I/O server on a National
Instruments real-time controller and use this controller as a Modbus slave device. You also can create a Modbus I/O
server on a host machine and use this server as a Modbus master device to communicate with a Modbus slave device.

(DSC Module) Refer to the Modbus Fundamentals VI in the labview\examples\lvdsc\IO
Servers\ModbusDemo\Modbus Fundamentals.lvproj for an example of connecting to and interacting with a Modbus
device.

 Open examples Browse related examples

Use the View I/O Items dialog box to view the data items to which the I/O server can read or write. You also can
monitor these data items by using the NI Distributed System Manager. To launch the NI Distributed System Manager
from LabVIEW, select Tools»Distributed System Manager.

Modbus I/O servers use six-digit addresses. You can convert a five-digit address to a six-digit address by adding a zero
between the first and the second digits of the five-digit address. For example, you can convert address 45001 to
405001.

Modbus and Modbus Slave I/O server data items use the following denotations:

A—Denotes an array.

D—Denotes a 32-bit unsigned integer.

F—Denotes a 32-bit floating-point number.

L—Denotes the length of an array. The Maximum Data Points Per Command values that you specify in the
Advanced Attribute Settings Dialog Box determine the maximum length of the array. If the array elements are 32-
bit integers or floating-point numbers, the maximum length of the array is half the value you specify for the
corresponding Maximum Data Points Per Command value.

S—Denotes a 16-bit signed integer.

SD—Denotes a 32-bit signed integer.

(DSC Module) Refer to the Modbus Datatype Extension VI in the labview\examples\lvdsc\IO
Servers\ModbusExtension\Modbus Datatype Extension.lvproj for an example of using the advanced Modbus I/O
server data items.

 Open examples Browse related examples

The following table lists the data items that a Modbus or Modbus Slave I/O server supports. The Example column of
this table explains the relationship between data items and their physical I/O point addresses on a Modbus device. This
column uses the following format: Data Item = {I/O point address}. Note that one 32-bit data item occupies two I/O
points.

Note When reading or writing valid and invalid data items simultaneously, Modbus and Modbus Slave I/O
servers identify all data items as invalid.

Data Item Data Type
Modbus

Modbus
Slave Description Example

Read Write Read Write

000001–065535 Boolean
value

Yes Yes Yes Yes Accesses single-bit coils. 000001 =
{000001}

100001–165535 Boolean
value

Yes No Yes Yes Accesses single-bit discrete inputs. 100002 =
{100002}

300001.1–
365535.16

Boolean
value

Yes No Yes Yes Accesses individual bits of input registers
and interprets them as logical TRUE or
FALSE values. The least significant bit is
1. The most significant bit is 16.

300001.1 =
{the first bit of
300001}

300001–365535 16-bit
unsigned
integer

Yes No Yes Yes Accesses 16-bit input registers as
unsigned integers ranging from 0 to
65,535.

300001 =
{300001}

400001.1–
465535.16

Boolean
value

Yes Yes Yes Yes Accesses individual bits of holding
registers and interprets them as logical
TRUE or FALSE values. The least
significant bit is 1. The most significant
bit is 16.

400002.16 =
{the 16th bit of
400002}

400001–465535 16-bit
unsigned
integer

Yes Yes Yes Yes Accesses 16-bit holding registers as
unsigned integers ranging from 0 to
65,535.

400002 =
{400002}

A000001L1–
A065535L1

Array of
Boolean

Yes Yes Yes Yes Accesses arrays of single-bit coils. A000001L2 =
{000001,

Page 1 of 3Using Modbus I/O Servers (DSC and RT Modules)

17.01.2009mk:@MSITStore:C:\Programme\National%20Instruments\LabVIEW%208.6\help\lv...

values 000002}

A100001L1–
A165535L1

Array of
Boolean
values

Yes No Yes Yes Accesses arrays of single-bit discrete
inputs.

A100005L3 =
{100005–
100007}

A300001L1–
A365535L1

Array of
16-bit
unsigned
integers

Yes No Yes Yes Accesses arrays of 16-bit input registers
as arrays of unsigned integers.

A300001L2 =
{300001,
300002}

A400001L1–
A465535L1

Array of
16-bit
unsigned
integers

Yes Yes Yes Yes Accesses arrays of 16-bit holding
registers as arrays of unsigned integers.

A400005L3 =
{400005–
400007}

AD300001L1–
AD365534L1

Array of
32-bit
unsigned
integers

Yes No Yes Yes Accesses arrays of 32-bit unsigned
integers. Each 32-bit unsigned integer in
the array is composed of two adjacent
16-bit input registers.

AD300001L1 =
{300001,
300002}

AD400001L1–
AD465534L1

Array of
32-bit
unsigned
integers

Yes Yes Yes Yes Accesses arrays of 32-bit unsigned
integers. Each 32-bit unsigned integer in
the array is composed of two adjacent
16-bit holding registers.

AD400002L3 =
{400002–
400007}

AF300001L1–
AF365534L1

Array of
32-bit
floating-
point
numbers

Yes No Yes Yes Accesses arrays of 32-bit floating-point
numbers. Each 32-bit floating-point
number in the array is composed of two
adjacent 16-bit input registers.

AF300001L2 =
{300001–
300004}

AF400001L1–
AF465534L1

Array of
32-bit
floating-
point
numbers

Yes Yes Yes Yes Accesses arrays of 32-bit floating-point
numbers. Each 32-bit floating-point
number in the array is composed of two
adjacent 16-bit holding registers.

AF400002L3 =
{400002–
400007}

AS300001L1–
AS365535L1

Array of
16-bit
signed
integers

Yes No Yes Yes Accesses arrays of 16-bit input registers
as arrays of signed integers.

AS300001L1 =
{300001}

AS400001L1–
AS465535L1

Array of
16-bit
signed
integers

Yes Yes Yes Yes Accesses arrays of 16-bit holding
registers as arrays of signed integers.

AS400002L3 =
{400002–
400004}

ASD300001L1–
ASD365534L1

Array of
32-bit
signed
integers

Yes No Yes Yes Accesses arrays of 32-bit signed
integers. Each 32-bit signed integer in
the array is composed of two adjacent
16-bit input registers.

ASD300001L1 =
{300001,
300002}

ASD400001L1–
ASD465534L1

Array of
32-bit
signed
integers

Yes Yes Yes Yes Accesses arrays of 32-bit signed
integers. Each 32-bit signed integer in
the array is composed of two adjacent
16-bit holding registers.

ASD400002L3 =
{400002–
400007}

CommFail Boolean
value

Yes No N/A N/A Represents a signal the Modbus I/O
server generates. The signal is TRUE if
the Shared Variable Engine fails to
communicate with a Modbus device.
Modbus Slave I/O servers do not support
this data item.

N/A

D300001–
D365534

32-bit
unsigned
integer

Yes No Yes Yes Accesses two adjacent 16-bit input
registers as one 32-bit unsigned integer
ranging from 0 to 4,294,967,295.

D300001 =
{300001,
300002}

D400001–
D465534

32-bit
unsigned
integer

Yes Yes Yes Yes Accesses two adjacent 16-bit holding
registers as one 32-bit unsigned integer
ranging from 0 to 4,294,967,295.

D400002 =
{400002,
400003}

F300001–
F365534

32-bit
floating-
point
number

Yes No Yes Yes Accesses two adjacent 16-bit input
registers as one 32-bit floating-point
number.

F300001 =
{300001,
300002}

F400001–
F465534

32-bit
floating-
point
number

Yes Yes Yes Yes Accesses two adjacent 16-bit holding
registers as one 32-bit floating-point
number.

F400002 =
{400002,
400003}

Page 2 of 3Using Modbus I/O Servers (DSC and RT Modules)

17.01.2009mk:@MSITStore:C:\Programme\National%20Instruments\LabVIEW%208.6\help\lv...

Submit feedback on this topic

OffHook Boolean
value

Yes Yes N/A N/A Specifies that a Modbus object retain
exclusive use of a communication port
when the value of OffHook is TRUE. If
the value is FALSE, the Modbus object
does not retain exclusive use of the
communication port. Modbus Slave I/O
servers do not support this data item.

N/A

S300001–
S365535

16-bit
signed
integer

Yes No Yes Yes Accesses 16-bit input registers as signed
integers ranging from –32,768 to
32,767.

S300001 =
{300001}

S400001–
S465535

16-bit
signed
integer

Yes Yes Yes Yes Accesses 16-bit holding registers as
signed integers ranging from –32,768 to
32,767.

S400002 =
{400002}

SD300001–
SD365534

32-bit
signed
integer

Yes No Yes Yes Accesses two adjacent 16-bit input
registers as one 32-bit signed integer
ranging from –2,147,483,648 to
2,147,483,647.

SD300001 =
{300001,
300002}

SD400001–
SD465534

32-bit
signed
integer

Yes Yes Yes Yes Accesses two adjacent 16-bit holding
registers as one 32-bit signed integer
ranging from –2,147,483,648 to
2,147,483,647.

SD400002 =
{400002,
400003}

UpdateNow Boolean
value

No Yes N/A N/A Specifies that the Modbus I/O server
refresh the Modbus device once if the
value of UpdateNow changes from
FALSE to TRUE. Modbus Slave I/O
servers do not support this data item.

N/A

UpdateRate 64-bit
floating-
point
number

Yes Yes N/A N/A Specifies how often the Modbus I/O
server refreshes a Modbus device, in
seconds. You can specify a non-integer
value for this data item. If the value of
this data item is zero, the Modbus I/O
server does not refresh the device.
Modbus Slave I/O servers do not support
this data item.

N/A

Updating Boolean
value

Yes No Yes No Represents a signal the Modbus or
Modbus Slave I/O server generates. The
signal is TRUE while the Modbus I/O
server polls a Modbus device or the
Modbus Slave I/O server is being
updated.

N/A

Page 3 of 3Using Modbus I/O Servers (DSC and RT Modules)

17.01.2009mk:@MSITStore:C:\Programme\National%20Instruments\LabVIEW%208.6\help\lv...

