

Configuring WAGO Ethernet with
National Instruments LabVIEW
via ModbusTCP

Application note

A201602, English
Version 1.1.1

2 � General

 Application note
 A201602

Copyright 2005 by WAGO Kontakttechnik GmbH
All rights reserved.

WAGO Kontakttechnik GmbH
Hansastraße 27
D-32423 Minden

Phone: +49 (0) 571/8 87 � 0
Fax: +49 (0) 571/8 87 � 1 69

E-Mail: info@wago.com

Web: http://www.wago.com

Technical Support
Phone: +49 (0) 571/8 87 � 5 55
Fax: +49 (0) 571/8 87 � 85 55

E-Mail: support@wago.com

Every conceivable measure has been taken to ensure the correctness and com-
pleteness of this documentation. However, as errors can never be fully ex-
cluded we would appreciate any information or ideas at any time.

We wish to point out that the software and hardware terms as well as the
trademarks of companies used and/or mentioned in the present manual are
generally trademark or patent protected.

mailto:info@wago.com
http://www.wago.com/
mailto:support@wago.com

 Table of Contents � 3

Application note
A201602

TABLE OF CONTENTS

1 Important comments ... 4
1.1 Legal principles.. 4
1.1.1 Copyright ... 4
1.1.2 Personnel qualification .. 4
1.1.3 Intended use ... 4
1.2 Range of validity.. 4

2 Description.. 5

3 Calling the �MBT.dll� from LabVIEW... 7
3.1 The example �lv7MBTApp_01.vi� ... 8
3.2 The example �lv7MBTApp_02.vi� ... 9

4 Build a socket based application .. 10
4.1 The example �lv7SockApp_01.vi� .. 10
4.2 The example �lv7SockApp_02.vi� .. 11
4.3 The application �lv7WagoLibApp_01.vi�... 12
4.3.1 The INI-file .. 13

5 Appendix... 14
5.1 The process image ... 14
5.2 The MODBUS TCP DLL �MBT.dll�.. 15
5.3 Common MODBUS functions... 16
5.4 Use of the MODBUS functions ... 18
5.4.1 Function code FC1 (Read Coils) ... 19
5.4.2 Function code FC2 (Read Discrete Inputs) ... 20
5.4.3 Function code FC3 (Read multiple registers) 21
5.4.4 Function code FC4 (Read input registers) ... 22
5.4.5 Function code FC15 (Force Multiple Coils).. 23
5.4.6 Function code FC16 (Write multiple registers) 24
5.4.7 Function code FC23 (Read/Write multiple registers).......................... 25

4 � Important comments

 Application note
 A201602

1 Important comments
To ensure fast installation and start-up of the units described in this manual,
we strongly recommend that the following information and explanation is
carefully read and adhered to.

1.1 Legal principles

1.1.1 Copyright

This manual is copyrighted, together with all figures and illustrations con-
tained therein. Any use of this manual which infringes the copyright provi-
sions stipulated herein, is not permitted. Reproduction, translation and elec-
tronic and photo-technical archiving and amendments require the written con-
sent of WAGO Kontakttechnik GmbH. Non-observance will entail the right of
claims for damages.

1.1.2 Personnel qualification

The use of the product detailed in this manual is exclusively geared to special-
ists having qualifications in PLC programming, electrical specialists or per-
sons instructed by electrical specialists who are also familiar with the valid
standards. WAGO Kontakttechnik GmbH declines all liability resulting from
improper action and damage to WAGO products and third party products due
to non-observance of the information contained in this manual.

1.1.3 Intended use

For each individual application, the components supplied are to work with a
dedicated hardware and software configuration. Modifications are only admit-
ted within the framework of the possibilities documented in the manuals. All
other changes to the hardware and/or software and the non-conforming use of
the components entail the exclusion of liability on part of WAGO Kon-
takttechnik GmbH.

Please direct any requirements pertaining to a modified and/or new hardware
or software configuration directly to WAGO Kontakttechnik GmbH.

1.2 Range of validity
This application note is based on the stated hardware and software of the spe-
cific manufacturer as well as the correspondent documentation. This applica-
tion note is therefore only valid for the described installation.

New hardware and software versions may need to be handled differently.
Please note the detailed description in the specific manuals.

 Description � 5

Application note
A201602

2 Description
The purpose of this document is to provide step-by-step procedures for con-
figuring National Instruments LabVIEW for direct communications with
WAGO Ethernet I/O. The procedures that follow illustrate solutions for a di-
rect communication between LabVIEW and the WAGO-I/O without additional
protocols or proxis (like OPC, described in appnote �A201601�) using the
open standard ModbusTCP.

This document provides two different ways to reach this goal.
1.) Calling the WAGO-Modbus-Driver �MBT.dll� from LabVIEW.
2.) Build your own socket based protocol implementation.

Both ways have its advantages, that mean the comfort supplied by the
�MBT.dll� is payed by an increased CPU-usage, but both solutions are up to
20 times faster then an OPC based solution.

Adapting these examples, you need to know on how the buscoupler or control-
lers build the process image and how to access the process image with the
proper Modbus function code and address locations.

When power is applied to the coupler/controller, it automatically detects all
connected I/O modules and creates a local process image. This can be analog
and digital modules in any order.
The process image is subdivided into inputs data area and outputs data area.
The data of the analog modules are mapped first into the process image. The
modules are mapped in the order of their position after the coupler/controller.
The digital modules are grouped after the analog modules, in the form of
words (16 bits per word). When the number of digital I/O.s exceeds 16 bits,
the coupler automatically starts another word.

The Modbus/TCP protocol packet is placed in the application layer positioned
at level 7 of the OSI model, provides client/server communication between
devices using port 502. Modbus use the �big-endian� representation for en-
coding data items and addresses. Modbus was developed in 1979 and defines
the terms as �coils� and �registers�. Coils means digital output, and register
could be translated as �word data�.

6 � Description

 Application note
 A201602

The procedures in this document have been tested with the following hard-
ware/software configurations:

• Microsoft Operatingsystem NT4(SP6), win2k or XP

• National Instruments LabVIEW 7 and LabVIEW 7.1

• WAGO Modbus-Driver �MBT.dll�

• WAGO 750-x42 16Bit Ethernet TCP/IP Coupler or Controller and
 WAGO 750-x41 32Bit Ethernet TCP/IP Coupler or Controller.
 WAGO 758-870 industrial compact PC

For additional information about WAGO I/O-System visit www.wago.com,
contact support@wago.com or call +49/571/887-555

For additional information about LabVIEW visit www.ni.com.

Under www.ethereal.com you find the free network protocol analyser �ethe-
real�. This software helpful to understand messages on the network.

The Modbus-protocol-specification and more are available on
www.modbus.org.

http://www.wago.com/
mailto:support@wago.com
http://www.ni.com/
http://www.ethereal.com/
http://www.modbus.org/

 Calling the �MBT.dll� from LabVIEW � 7

Application note
A201602

3 Calling the �MBT.dll� from LabVIEW
The communication disscussed in this chapter needs the �MBT.dll� for opera-
tion. The easiest way is to copy the DLL in to the windows system folder.

Together with the �MBT.dll�, a LabVIEW VI Library is shipped .
The VI-library �MBT.llb� capsulates the �call library function node� in easys
to use subvi�s.

The following image shows the �MBTConnect.vi� block diagram.

The subvi bundels the calls of the two function MBTInit() and MBTCon-
nect().

Don�t forget to call �MBTDisconnect.vi� to close the used resources, other-
wise the operating system throws an access violation exception error.

8 � Calling the �MBT.dll� from LabVIEW

 Application note
 A201602

3.1 The example �lv7MBTApp_01.vi�
The �lv7MBTApp_01.vi� example is a small temperature writer, the example
expects a �750-469� as the first analog input module. The �750-469� is a 2
Channel thermocouples module with diagnostics of sensor types: J, K, B, E,
N, R, S, T, U or L.

The �lv7MBTApp_01.vi� is a mix of using the VI-lib �MBT.llb� to do direct
calls to the dynamic link library �MBT.dll� in one application.

In this example Modbus address 1 cycles through to read one word of data.
Address 1 correspond to the second channel of the thermocouples module.
WAGO starts at Word Address 0

 Calling the �MBT.dll� from LabVIEW � 9

Application note
A201602

3.2 The example �lv7MBTApp_02.vi�
The �lv7MBTApp_02.vi� places data in a small modbus monitor, which is
able to read and write word and bit data to/from any modbus address.

This example shows using all subvis in the �MBT.llb�

10 � Build a socket based application

 Application note
 A201602

4 Build a socket based application
The advantage of your own modbus implementation is the reduced overhead to
make it easier to distribute your application because there are no additional li-
braries needed.

4.1 The example �lv7SockApp_01.vi�
The �lv7SockApp_01.vi� places data in a small temperature writer, the exam-
ple expects a �750-469� as the first analog input module, but it will work with
other configuration.

Below you see the hardcoded modbus telegram

Take into account that this example has no modbus error handling.

 Build a socket based application � 11

Application note
A201602

4.2 The example �lv7SockApp_02.vi�
The �lv7SockApp_02.vi� does not display the classical example character
where a small project shows a solution for given task. The
�lv7SockApp_02.vi� is more of a code base that could be the starting point for
the application.

The block diagram shows a hard coded functioncode 23 that reads two (input)
words from address 4 and writes two words to the (output) address 4.
The application runs a while loop and executes the following list of function-
codes in each loop.

case function-
code

Description

0 -- IDLE � do nothing

1 FC3 Read multiple register

2 FC16 Write multiple registers

3 FC23 Read/Write multiple registers

4 FC2 Read discret inputss

5 FC15 Write coils

Realized functioncodes in this example

12 � Build a socket based application

 Application note
 A201602

4.3 The application �lv7WagoLibApp_01.vi�
The �lv7WagoLibApp_01.vi� is a more sophisticated example that displays a
configurable process image monitor that could be a useful tool.

The configuration is done by an INI-file described below, where the assembled
modules described in detail, together with additional information such as chan-
nel names and format information to modify the raw process data.

This example expects a �digital_offset� of zero for inputs and outputs.

 Build a socket based application � 13

Application note
A201602

4.3.1 The INI-file

An INI file is an 8-bit text file divided into sections, each containing zero or
more keys. Each key contains zero or more values. Section names are en-
closed in square brackets, and must begin at the beginning of a line.

[SectionName]
KeyName=value
;Comment
KeyName=Value1, Value2, valueN ;Comment

The INI-file of this example can have any name, only the file extension �.ini�
is mandatory. The content of the file starts with the section �WAGO-module�
followed by a key for each module. The values are section names, where de-
tailed information for each module is defined.

The section �MyCoupler� has a different structure than the rest, this describes
the head station and contains the network parameter like Ip-address and port
number.

Each module is described by the common key�s �Name�, �Type�, �Channels�
and �BitCount� together with additional module dependend keys.
In general, all �name�-values for the headstation, modules and channels are
not used for address calculation depending the process image. Names are addi-
tional information you can use inside your application.

To work with a module not listet, identify the �Type�, �Channels� and �Bit-
Count� for this module and create a new section.

14 � Appendix

 Application note
 A201602

5 Appendix
5.1 The process image

The powered-up controller recognizes all I/O modules connected.

The controller generates an internal local process image from the data width
and type of I/O modules, as well as the position of the I/O modules in the
node. This image is divided into an input data area and an output data area.

The data of the digital I/O modules are bit-based (i.e., the data exchange is-
made by bits). The analog I/O and most specialty modules (e.g., counter mod-
ules, encoder modules, and communication modules) are byte-based, in which
the data exchange is made by bytes.

The process image is divided into an input data area and an output data area.
Each I/O module is assigned a location in the process image, based on the data
exchange type (i.e., bit-based or byte-based) and their position after the con-
troller.

All of the byte-based I/O modules are filled in the process image first, then the
bit-based modules. The bits of the digital modules are grouped into a word.
Once the number of digital I/Os exceeds 16 bits, the controller automatically
starts another word.

Changing the physical layout of a node will result in a new structure of the
process image. Also, the addresses of the process data will change.
When adding or removing modules, the process data must be verified.

The process image for physical input and output data is stored in the first 256
words of memory (word 0 to 255). This memory actually consists of a sepa-
rate area for the input and output data.

 Appendix � 15

Application note
A201602

5.2 The MODBUS TCP DLL �MBT.dll�
The DLL implements the Modbus/TCP Protocol. The Modbus/TCP DLL sup-
ports the operating systems Windows NT 4.0 (from version SP5), Windows
2000, Windows 95 (with Windows Socket 2.0 Update) and Windows 98.
Internaly the TCP/IP communication uses the Windows Socket 2.0 interface.

The DLL supports synchronous and asynchronous reading and writing of val-
ues. TCP or UDP can be selected optionally as a transport protocol. The dll
can be used by nearly all programming languages for microsoft operating sys-
tems like C, C++, C#, Delphi, LabVIEW, VBA, VB6, vb.net and more.
For an actual list of examples contact support@wago.com or order 759-312
for the �WAGO Modbus TCP DLL CD�.
The complied manual can also be found in the internet.under:
http://www.wago.com/wagoweb/documentation/759/eng_manu/312/m931200
e.pdf

Visual Basic and LabVIEW allow only synchronous function calls of the
DLL.

This library only supports the commands FC1, FC2, FC3, FC4, FC7, FC15
and FC16 from Open Modbus/TCP protocol V1.0.

All functions of the MBT library have return values corresponding to the
HRESULT format. The functions of the socket APIs do not return any return
values of this format. The MBT library converts these return values by means
of the macro HRESULT_FROM_WIN32. In the following description this is
indicated by means of "HR from". The following functions are contained in
the Modbus/TCP.DLL:
- MBTInit()
- MBTExit()
- MBTConnect()
- MBTDisconnect()
- MBTReadRegisters()
- MBTReadCoils()
- MBTReadExeptionStatus()
- MBTReadCompleted()
- MBTWriteRegisters()
- MBTWriteCoils()
- MBTWriteCompleted()
- MBTSwapWord()
- MBTSwapDWord()

The DLL was developed with the Microsoft Visual C++ 6.0 development en-
vironment. All modules of the DLL are translated as ASCII components with
a statically linked C runtime.

http://www.wago.com/wagoweb/documentation/759/eng_manu/312/m931200e.pdf
http://www.wago.com/wagoweb/documentation/759/eng_manu/312/m931200e.pdf

16 � Appendix

 Application note
 A201602

5.3 Common MODBUS functions
MODBUS functions from the OPEN MODBUS / TCP SPECIFICATION are
found in the application layer of the WAGO ETHERNET fieldbus cou-
pler/controller.

These functions allow digital or analog input and output data to be set or di-
rectly read out of the fieldbus node.

Function code Function Description

hexadeci-

mal

FC1: 0x01 read coils Reading of several input bits

FC2: 0x02 read input discretes Reading of several input bits

FC3: 0x03 read multiple registers Reading of several input registers

FC4: 0x04 read input registers Reading of several input registers

FC5: 0x05 write coil Writing of an individual output bit

FC6: 0x06 write single register Writing of an individual output register

FC7: 0x07 read exception status Reading of the first 8 input bits

FC11: 0x0B get comm event counters Communication event counter

FC15: 0x0F force multiple coils Writing of several output bits

FC16: 0x10 write multiple registers Writing of several output registers

FC23 0x17 read/write multiple
registers

Reading and writing of several output registers

Tab. 5-1: List of the MODBUS functions in the fieldbus coupler and controller

To execute a desired function, specify the respective function code and the
address of the selected input or output channel.

Attention
The examples listed use the hexadecimal system (i.e.: 0x0000) as their nu-
merical format. Addressing begins with 0.
The format and beginning of the addressing may vary according to the soft-
ware and the control system. All addresses then need to be converted accord-
ingly.

All MODBUS functions in the WAGO ETHERNET fieldbus coupler and con-
troller are executed as follows:

When a function code is entered, the MODBUS master (i.e. PC) makes a re-
quest to the coupler/controller of the fieldbus node.

 Appendix � 17

Application note
A201602

Subsequently, the coupler/controller sends a datagram to the master as a re-
sponse.

If the coupler receives an incorrect request, it sends an error datagram (Excep-
tion) to the master.

The exception code contained in the exception has the following meaning:

Exception Code Meaning
0x01 Illegal Function

0x02 Illegal Data Address

0x03 Illegal Data Value

0x04 Slave Device Failure

The following chapters describe the datagram architecture of request, response
and exception with examples for each function code.

Note
In the case of the read functions (FC1 � FC 4) the outputs can be additionally
written and read back by adding an offset of 200hex (0x0200) to the MODBUS
address.

18 � Appendix

 Application note
 A201602

5.4 Use of the MODBUS functions
The graphical overview uses a fieldbus node as an example to show which
MODBUS functions can be used to access data of the process image.

Highbyte Lowbyte

0x0003
0x0002

0x0001
0x0000

0x0005
0x0004

0x0007
0x0006

0x0008

Word2Word2
Word2Word1

Word2Word2
Word2Word1

Word2Word2
Word2Word1

Word2Word2
Word2Word1

Word2Word2
Word2Word1

Word2Word2
Word2Word1

Word2Word2
Word2Word1

Word2Word2
Word2Word1

0x0003 / 0x0203
0x0002 / 0x0202

0x0001 / 0x0201
0x0000 / 0x0200

0x0004 /
0x0204

0x0203
0x0202

0x0201
0x0200

0x0204

0x0000 / 0x0200

0x0001 / 0x0201

0x0200

0x0201

11

2

1

2

3

1

3

2

3

AODO AO

7
5

0
-3

4
2

ON

LINK

TxD/RxD

I/O

ERROR

Ethernet

W
A

G
O

�
I /

O
�

S
Y

S
TE

M

DI DI DI DIAI AI AI AI

Highbyte Lowbyte

Highbyte Lowbyte

0x0001

0x0009

0x000D

0x0005

0x0000

0x0008

0x000C

0x0004

0x0003

0x000B

0x000F

0x0007

0x0002

0x000A

0x000E

0x0006

Input modules 750- 402 402 472 472 402 476 402 476 Output modules 750- 501 550 550

MODBUS addresses

MODBUS
addresses

MODBUS addresses

MODBUS addresses

MODBUS addresses

MODBUS addresses

FC 3 ()
(Read Input Registers)

Read Multiple Registers
FC 4

FC 1 (
Read Input)

Read Coils)
FC 2 (Discretes

FC 3 (Multiple
Read Input Registers)

Read Registers)
FC 4 (

FC 5 (Write Coil)
FC 15 (Force Multiple Coils)

FC 6 (Write)
FC 16 (Multiple Registers)

Single Register
Write

FC 1 (
Read Input Discretes)

Read Coils)
FC 2 (

Fig. 5-1: Use of the MODBUS functions G012918e

 Appendix � 19

Application note
A201602

5.4.1 Function code FC1 (Read Coils)

The function reads the status of the input and output bits (coils) in slave.

Request

The request determines the starting address and the number of bits to be read.
Example: An inquiry, with which the bits 0 to 7 are to be read.

Byte Field name Example
Byte 0, 1 Transaction identifier 0x0000

Byte 2, 3 protocol identifier 0x0000

Byte 4, 5 length field 0x0006

Byte 6 unit identifier 0x01 not used

Byte 7 MODBUS function code 0x01

Byte 8, 9 reference number 0x0000

Byte 10, 11 Bit count 0x0008

Response

The current values of the inquired bits are packed in the data field. A 1 corre-
sponds to the ON status and a 0 to the OFF status. The lowest value bit of the
first data byte contains the first bit of the inquiry. The others follow in ascend-
ing order. If the number of inputs is not a multiple of 8, the remaining bits of
the last data byte are filled with zeroes (truncated).

Byte Field name Example
.....

Byte 7 MODBUS function code 0x01

Byte 8 Byte count 0x01

Byte 9 Bit values 0x12

The status of the inputs 7 to 0 is shown as byte value 0x12 or binary 0001
0010.
Input 7 is the bit having the highest significance of this byte and input 0 the
lowest value.
The assignment is thus made from 7 to 0 with OFF-OFF-OFF-ON-OFF-OFF-
ON-OFF.

Exception

Byte Field name Example
.....

Byte 7 MODBUS function code 0x81

Byte 8 Exception code 0x01 or 0x02

20 � Appendix

 Application note
 A201602

5.4.2 Function code FC2 (Read Discrete Inputs)

This function reads the input bits in the slave.

Requests

The request determines the starting address and the number of bits to be read.
Example: An inquiry with which the bits 0 to 7 are to be read:

Byte Field name Example
Byte 0, 1 Transaction identifier 0x0000

Byte 2, 3 protocol identifier 0x0000

Byte 4, 5 Length field 0x0006

Byte 6 unit identifier 0x01 not used

Byte 7 MODBUS function code 0x02

Byte 8, 9 reference number 0x0000

Byte 10, 11 Bit count 0x0008

Response

The current value of the inquired bit is packed into the data field. A 1 corre-
sponds to the ON status and a 0 the OFF status. The lowest value bit of the
first data byte contains the first bit of the inquiry. The others follow in an as-
cending order. If the number of inputs is not a multiple of 8, the remaining bits
of the last data byte are filled with zeroes (truncated).

Byte Field name Example
.....

Byte 7 MODBUS function code 0x02

Byte 8 Byte count 0x01

Byte 9 Bit values 0x12

The status of the inputs 7 to 0 is shown as a byte value 0x12 or binary 0001
0010.
Input 7 is the bit having the highest significance of this byte and input 0 the
lowest value.
The assignment is thus made from 7 to 0 with OFF-OFF-OFF-ON-OFF-OFF-
ON-OFF.

Exception

Byte Field name Example
.....

Byte 7 MODBUS function code 0x82

Byte 8 Exception code 0x01 or 0x02

 Appendix � 21

Application note
A201602

5.4.3 Function code FC3 (Read multiple registers)

The binary contents of holding registers are read from the slave using this
function.

Request

The request determines the start word address (start register) and the number
the register to be read. The addressing starts with 0.
Example: An inquiry of the registers 0 and 1:

Byte Field name Example
Byte 0, 1 Transaction identifier 0x0000

Byte 2, 3 protocol identifier 0x0000

Byte 4, 5 length field 0x0006

Byte 6 unit identifier 0x01 not used

Byte 7 MODBUS function code 0x03

Byte 8, 9 reference number 0x0000

Byte 10, 11 Word count 0x0002

Response

The reply register data is packed as 2 bytes per register. The first byte contains
the higher value bits, the second the lower values.

Byte Field name Example
.....

Byte 7 MODBUS function code 0x03

Byte 8 Byte count 0x04

Byte 9, 10 Value Register 0 0x1234

Byte 11, 12 Value Register 1 0x2345

The contents of register 0 are displayed by the value 0x1234 and the contents
of register 1 is 0x2345.

Exception

Byte Field name Example
.....

Byte 7 MODBUS function code 0x83

Byte 8 Exception code 0x01 or 0x02

22 � Appendix

 Application note
 A201602

5.4.4 Function code FC4 (Read input registers)

This function serves to read a number of input words (also �input register�).

Request

The request determines the address of the start word (start register) and the
quantity of the registers to be read. Addressing starts with 0.

Example: An inquiry of the registers 0 and 1:

Byte Field name Example
Byte 0, 1 Transaction identifier 0x0000

Byte 2, 3 protocol identifier 0x0000

Byte 4, 5 length field 0x0006

Byte 6 unit identifier 0x01 not used

Byte 7 MODBUS function code 0x04

Byte 8, 9 reference number 0x0000

Byte 10, 11 Word count 0x0002

Response

The register data of the answer is packed as 2 bytes per register. The first byte
has the higher value bits, the second the lower values.

Byte Field name Example
.....

Byte 7 MODBUS function code 0x04

Byte 8 Byte count 0x04

Byte 9, 10 Value Register 0 0x1234

Byte 11, 12 Value Register 1 0x2345

The contents of register 0 are shown by the value 0x1234 and the contents of
register 1 is 0x2345.

Exception

Byte Field name Example
.....

Byte 7 MODBUS function code 0x84

Byte 8 Exception code 0x01 or 0x02

 Appendix � 23

Application note
A201602

5.4.5 Function code FC15 (Force Multiple Coils)

Using this function a number of output bits are set to 1 or 0. The maximum
number is 256 bits.

Request

The first point is addressed with 0.
The inquiry message specifies the bits to be set. The requested 1 or 0 states are
determined by the contents of the inquiry data field.

In this example 16 bits are set, starting with the address 0. The inquiry con-
tains 2 bytes with the value 0xA5F0 or 1010 0101 1111 0000 in binary format.

The first byte transmits the 0xA5 to the addresses 7 to 0, whereby 0 is the low-
est value bit. The next byte transmits 0xF0 to the addresses 15 to 8, whereby
the lowest value bit is 8.

Byte Field name Example
Byte 0, 1 Transaction identifier 0x0000

Byte 2, 3 protocol identifier 0x0000

Byte 4, 5 Length field 0x0009

Byte 6 unit identifier 0x01 not used

Byte 7 MODBUS function code 0x0F

Byte 8, 9 reference number 0x0000

Byte 10, 11 Bit Count 0x0010

Byte 12 Byte Count 0x02

Byte 13 Data Byte1 0xA5

Byte 14 Data Byte2 0xF0

Response

Byte Field name Example
.....

Byte 7 MODBUS function code 0x0F

Byte 8, 9 Reference number 0x0000

Byte 10, 11 Bit Count 0x0010

Exception

Byte Field name Example
.....

Byte 7 MODBUS function code 0x8F

Byte 8 Exception code 0x01 or 0x02

24 � Appendix

 Application note
 A201602

5.4.6 Function code FC16 (Write multiple registers)

This function writes values in a number of output words (also �Output regis-
ter�).

Request

The first point is addressed with 0.

The inquiry message determines the registers to be set. The data is sent as 2
bytes per register.

The example shows how data is set in the two registers 0 and 1:

Byte Field name Example
Byte 0, 1 Transaction identifier 0x0000

Byte 2, 3 protocol identifier 0x0000

Byte 4, 5 length field 0x000B

Byte 6 Unit identifier 0x01 not used

Byte 7 MODBUS function code 0x10

Byte 8, 9 reference number 0x0000

Byte 10, 11 Word count 0x0002

Byte 12 Byte Count 0x04

Byte 13, 14 Register Value 1 0x1234

Byte 15, 16 Register Value 2 0x2345

Response

Byte Field name Example
.....

Byte 7 MODBUS function code 0x10

Byte 8, 9 Reference number 0x0000

Byte 10, 11 Register Value 0x0002

Exception

Byte Field name Example
.....

Byte 7 MODBUS function code 0x85

Byte 8 Exception code 0x01 or 0x02

 Appendix � 25

Application note
A201602

5.4.7 Function code FC23 (Read/Write multiple registers)

This function reads the register values and writes the values into a number of
output words (also �Output Register�).

Request

The first register is addressed with 0.

The inquiry message determines the registers to be read and set. The data is
sent as 2 bytes per register.

Example: The data in register 3 is set to value 0x0123, and values 0x0004 and
0x5678 are read out of the two registers 0 and 1.

Byte Field name Example
Byte 0 MODBUS function code 0x17

Byte 1-2 reference number for read 0x0000

Byte 3-4 Word count for read (1-125) 0x0002

Byte 5-6 reference number for write 0x0003

Byte 7-8 Word count for read (1-100) 0x0001

Byte 9 Byte Count
(B = 2 x word count for read)

0x02

Byte
10-(B+9)

Register Values 0x0123

Response

Byte Field name Example
Byte 0 MODBUS function code 0x17

Byte 1 Byte Count
(B = 2 x word count for read)

0x04

Byte 2-(B+1) Register Values 0x0004
0x5678

Exception

Byte Field name Example
Byte 0 MODBUS function code 0x97

Byte 1 Exception code 0x01 or 0x02

WAGO Kontakttechnik GmbH
Postfach 2880 � D-32385 Minden
Hansastraße 27 � D-32423 Minden
Phone: 05 71/8 87 � 0
Telefax: 05 71/8 87 � 1 69
E-Mail: info@wago.com

WAGO Corporation USA
N120W19129 Freistadt Road
PO Box 1015
Germantown, Wi 53022
Phone: 1-262-255-6333
Fax: 1-262-255-3232

Internet: http://www.wago.com

Call Toll Free: 1-800-DIN-RAIL
 (346-7245)

mailto:info@wago.com
http://www.wago.com/

	Important comments
	Legal principles
	Copyright
	Personnel qualification
	Intended use

	Range of validity

	Description
	Calling the “MBT.dll” from LabVIEW
	The example “lv7MBTApp_01.vi”
	The example “lv7MBTApp_02.vi”

	Build a socket based application
	The example “lv7SockApp_01.vi”
	The example “lv7SockApp_02.vi”
	The application “lv7WagoLibApp_01.vi”
	The INI-file

	Appendix
	The process image
	The MODBUS TCP DLL “MBT.dll”
	Common MODBUS functions
	Use of the MODBUS functions
	Function code FC1 (Read Coils)
	Function code FC2 (Read Discrete Inputs)
	Function code FC3 (Read multiple registers)
	Function code FC4 (Read input registers)
	Function code FC15 (Force Multiple Coils)
	Function code FC16 (Write multiple registers)
	Function code FC23 (Read/Write multiple registers)

