’ 4
{e:
N\

Logitech

Logitech QuickCam® SDK 1.0
Microsoft® Win32 C++ Programmer’s Guide

Logitech Confidential

QuickCam Team
Logitech, USA

© 2000 Logitech. All rights reserved. Logitech, the Logitech logo, and other Logitech marks are owned
by Logitech and may be registered. All other trademarks are the property of their respective owners.

Logitech Confidential -1-

Contents

QuickCam® SDK_ . :

chapter ONe. e, 6
] 0o [T 1 o] o PP 6
1.0 PUIPOSE .. et 6
1.2 FATUIES ... ittt et e e e e e e e e e e 6
1.3 Where APPlICaDIE 7
1.4 RUN-TIME REQUIFEIMENTSetiiieiei et e et e e e e e e eanes 7
1.5 QuickCam® SDK Software Architecture............cooviviiiiiiiiii e 8

chapter tWoO. e, 9
Getting Started with QUICKCaM® SDK........c.viuiiiiiiiiiiie e 9
2.1 InStalling the SDKcui e 9
2.2 RemoViNg the SDKt 9
2.3 SAMPIE COUE ... e 9

QuickCam™ Video Portal API ... 11

chapter three. .. 12
Using the VIdeo Portal AP ... 12
3.1 USEr INTErfaCe TOUN......iueiie it e e e eaaes 12
3.2 Getting STAMTEdceie e 12
3.3 TAKING PICTUIES ... ettt ea e e e 18
O YT |V = S PP 19
3.5 RECOIAING MOVIESueiiieet ettt e e e e e eaaes 20
3.6 Animation (step-capture, time-lapse) Movie Recordingcccccevvenennnen 21

chapter foU 22
Video Portal Interface ReferenCecvviuiiiiiiiiiiiii e 22
Methods ... 23
PrepareControl (Method)..........ccoooiiiiiiiiiiii 23
GetCameraCount (MethOd)........ueu i e 25
GetCameraDescription (Method)c.oveiiiiiii e 26
GetCameraType (Method)ccuiiniiiiie e e 27
QueryCameraConnected (Method) ..o 28
QueryRegistryCameralndex (Method)ooeuiiiiiiiiiiiiii e 29

Logitech Confidential -2-

GetCameraState (Method).........o.u v 30

ConnectCamera (Method)cuieuiiiiiii e e 31
ConnectCamera2 (Method)........ouu i 32
DisconnectCamera (Method)cuviuiiiiiii e 33
LoadRegistrySettings (Method)c..ovuiiiiiii e 34
SaveRegistrySettings (Method)ccuiviiiii e 35
SetCameraPropertyLong (Method) ..o 36
GetCameraPropertyLong (Method)oouiiiiiiiii e 37
PictureToFile (Method)c. o 38
PictureToFile (Method)c. i e 38
PictureToMemory (Method)ccuviuiinii e 39
StartMovieRecording (Method)oouiiiiiiii e 41
StopMovieRecording (Method)c.ueeuiiiiiii e 42
StepCaptureAddFrame (Method).......ccuveiiiiiiii e 43
MovieRecordWriteSingleFrame (Method)c.oveviiiiiiiiiiiii e 44
GetLastError (Method)oeeiie e e 45
SetVideoFormat (Method)oouiiiiiii e 46
GetVideoFormat (Method)oeu oo a7
ShowCameraDIg (Method)......c.veuiiiiiiii e e 48
EnableUIElements (Method)ceu i 49
StartVideoHOOK (Method)c.ooeeiiiiii e 50
StopVideoOHOOK (Method)ceniiiiii e 51
Properties ... 52
get_CameraConnected (Property).........ccccceeiiiiiiiiiniiiiiiiini i 52
get_Cameralndex (Property)ccccooiriiiiiiiiiiiiiiiin i 53
get_PictureSound (Property)cccoiiiiiiiiiiiiiiiii 54
put_PictureSound (Property)ccoceeiiiiiiiiniiiii 55
get_StampTextColor (Property)c.oooovviiiiiiiiiiiini 56
put_StampTextColor (PrOPEILY)eu e 57
get_StampFontName (ProPerty)c..oeu e e 58
put_StampFontName (Property) ..o e 59
get_StampPointSIize (PrOPEIrTY)iu i eae 60
put_StampPoiNtSiZe (PrOPerty)o e 61
get_StampTextShadow (PrOPErtY) ... ee e e 62
put_StampTextShadow (ProPerty)c.oee i 63
get_StampTextShadowColor (PrOPerty).......oecvieiiuieeiiieeiee e 64
put_StampTextShadowColor (Property)......oc v 65
get_StampTransparentBackground (PrOpPerty)ccoeeovveieinieiiiiiiineeeeeeennnes 66
put_StampTransparentBackground (PrOpPerty)cceeeuveeiiiiienieiiiieeneeeeenn. 67
get_StampBackgroundColor (Property)cccuvieieieiiiiiee e 68
put_StampBackgroundColor (Property)oeeuveeiiiiieiieeeeee e 69
get_ENablePreview (PrOPEITY) ...t eae 70
put_ENnablePreview (PrOPEITY) ...t 71

Logitech Confidential -3-

get_MovieVideoCompressionFOURCC (Property)occoveeveeneenieineineenaeeennnes 72

put_MovieVideoCompressioNFOURCC (Property).......ccoveeveeeenieieieeneeneennn. 73
get_MovieVideoCompressionKeyFramelnterval (Property)ccccoveeviennennnes 74
put_MovieVideoCompressionKeyFramelnterval (Property)cccooveeuveennnnn. 75
get_MovieVideoCompressionQuality (Property)......c.ccoveivenieiiiiiiiineeineinennnes 76
put_MovieVideoCompressionQuality (Property)......ccccoveeiviiiieiniiiiiineeneeeennn. 77
get_MoviePlaybackFPS (Property)cc.oee i 78
put_MoviePlaybackFPS (Property) ... 79
get_MovieAudioSamplesPerSecond (Property)c.oeeveeieinieieinneineeeeeeeanes 80
put_MovieAudioSamplesPerSecond (Property)ccoeeeoveeiiiiiienieiieineeneeeeenn. 81
get_MovieAudioChannels (Property)......c.oo i 82
put_MovieAudioChannels (Property)ooooiiiiiieie e 83
get_MovieAudioBitsPerSample (Property)cooeeoveieeiiiiiinei e 84
put_MovieAudioBitsPerSample (Property)ccooeeoveuieeiieiiiiiieineieeieeeeeeenn 85
get_MovieAudioCompressionNFOURCC (Property).......ccoueeveeneeiiineineenneenennnes 86
put_MovieAudioCompressionFOURCC (Property).......ccoveeveeieenieieineenneeneennn. 87
get_MovieAudioCompressionQuality (Property).........cooeeiieiieiiiiinineeineieennnes 88
put_MovieAudioCompressionQuality (Property)......ccccoveeiviiiiiiniiiiiinieneeeeenn. 89
get_MovieReCOrdAUdio (PrOPEITY) cu i e 90
put_MoVvieRecOrdAUdio (PrOPEITY).. .. iu i 91
get_MovieRecordMode (PrOPEITY) ...uueuieu et e e e 92
put_MovieRecordMode (PrOPEITY) e e e 93
get_MovieCreateFlags (ProPerty)cc. v 94
put_MovieCreateFlags (PropPerty) ... 95
get_MovieRecordingActiveLocal (PrOPertY)cuvveveeieeiiiieiieieeiee e e 96
get_MovieRecordingActiveGlobal (Property)coovveiiiiiiiiiiiiiieee 97
get_CameraState (PrOPEITY) i e e e 98
get_EnableMovieRecordErrorPrompt (Property)cooveeveenieiiiiiineeiiiieennnes 99
put_EnableMovieRecordErrorPrompt (Property)ccoooveeevveiiiiieiiiiieieeneen, 100
get_EnablePictureDiskErrorPrompt (Property).......cooeveeiieiiiniiiiiiiieieeeneen, 102
put_EnablePictureDiskErrorPrompt (Property).......ccooeeeeeiieiiiiiieniiiieieeneen, 103
put_StatusBarTeXt (PrOPEITY)oeuu e ens 104
get_PreviewMaxWidth (Property)..... .o 105
put_PreviewMaxWidth (Property).........ooeeiiiiiiei e 106
get_PreviewMaxHeight (Property) ..o 107
put_PreviewMaxHeight (ProOperty)......c.oveu i 108

Logitech Confidential -4-

PART 1

QuickCam® SDK

Logitech Confidential

chapter one

Introduction

With the emergence of new technology such as MPEG4 and Internet video broadcasting, computer cameras have
finally become more of a tool than a novelty. Logitech, the world leader in computer camera sales, decided to
provide a useful tool for software developers to easily control and utilize its family of QuickCam® cameras. From
this decision, the QuickCam® SDK was created. In the following pages you will learn how to develop your own
camera-based application, without the need to learn complex low-level camera interfaces. This document includes
information about developing camera-based applications in C++.

1.1 Purpose

The Logitech QuickCam® SDK is your backstage pass to developing digital camera applications for Logitech
QuickCam cameras. Traditional camera-based applications include complicated Video for Windows (VFW) or
DirectShow® programming instructions. Additionally, from these interfaces only one camera connection is allowed
at any given time. The Logitech QuickCam® SDK solves this single-connection issue and allows any number of
simultaneous camera connections through an easy-to-use COM interface.

1.2 Features

Window-based User Interface
A windowed user-interface with live video preview and easy to access camera settings is available.
Additionally, each user-interface element can be hidden or shown programmatically.

Access to Camera Settings
Modify brightness, contrast, hue, exposure, image size, and many other camera settings
programmatically, or with a provided camera settings dialog.

Access to Real-Time video data

For power users, access to real-time video data is available. This powerful feature allows fast, direct
access to video data. You can develop your own motion detector, or stream video data through a video
conferencing engine easily with this feature.

Movie Recording
Recording movies is easy with numerous recording properties at your disposal. Change the frame-rate,
video compressor, audio compressor, and other properties with simple COM properties.

Taking Pictures
Pictures can be saved either to disk or to an application supplied memory buffer.

Text Overlay
Program-specified text can be overlaid on pictures and movies. You can select text color, opaque or
transparent backgrounds, font, font size, and many other options.

Camera Notifications
Receive camera plug and un-plug notifications as well as a variety of other useful notification events.
These events help insure that your application is up-to-date with camera activity at all times.

Multiple Simultaneous Camera Connections

This power feature is the primary reason the QuickCam SDK exists. The QuickCam SDK creates virtual
camera instances for a single camera both efficiently and transparently. This feature allows you, as the
developer, to create multiple simultaneous connections to a camera without worry.

Motion Detection

Easily incorporate motion detection into your application. This bonus feature, once enabled, notifies your
application with motion analysis information.

Logitech Confidential -6-

1.3 Where Applicable

The Logitech QuickCam® SDK allows programmers working in C++, MFC, Microsoft Visual Basic® and other high-
level languages to easily develop high-performance camera-based applications. There are basically three
approaches to programming a digital video camera under Microsoft Windows®:

1. Video for Windows®

+ De facto standard for video capture on Windows®.

- No access to camera-specific features.

- Not easy to learn or use.

- Minimal: Many common tasks require additional programming.

2. DirectShow®

- Not easy to learn or use.
- Minimal: Many common tasks require additional programming.

3. Logitech QuickCam SDK

+ Full support of all camera features.

+ Highly accessible from many languages.

+ Simple interface to learn and use.

+ Advanced features such as text overlaying and motion detection.
+ Allows multiple simultaneous camera connections

- Proprietary: Will only work with Logitech QuickCam® products.

1.4 Run-Time Requirements
The Logitech QuickCam SDK can be used in the following environments:

Windows® 98
Windows® 2000
Windows® Millenium

Minimum System Requirements:

Logitech QuickCam® video camera

Pentium® 200 Mhz MMX (266 MHz or higher and MMX technology recommended)
16 MB RAM

Hard Drive with 100 MB free space

16-bit color displays (thousands of colors)

Windows-compatible sound card (full duplex sound card recommended) and mouse
Speakers required for receiving audio

Logitech Confidential -7-

1.5 QuickCam® SDK Software Architecture

The QuickCam® SDK depends on the interaction of several components at run-time, although your application only
communicates with one of them.

Logitech QuickCam® Video Portal Component

This component implements the COM interface described in this document. It is a windowed in-process
COM object with a video preview area and various Ul elements any of which can be enabled or disabled at
run-time. Complete camera control is available including contrast, brightness, and gain. Videos can be
recorded using any Video for Windows installable compressor. Pictures can be saved to either memory or
disk. Direct real-time access to video streaming data is also available. There are many other features
and subsets of the above features available from the video portal.

Logitech QuickCam® Video Server Component

The Video Server is invisible to your application. It serves to coordinate between multiple instances of the
Video Portal, and to manage and centralize their communication with the Video for Windows subsystem.
The Video Server also communicates with another Logitech component called LVCom, which
communicates directly with the WDM camera driver.

The Video Server interface is not described in this document. Future versions of the QuickCam® SDK may contain
information on the Video Server interface.

LVCom is installed as part of the camera product software, you do not have to include it or install it with your
application.

The following figure shows the various camera software components and how they are related at run-time:

Application Application

Video Portal Component Video Portal Component

Virtual Camera Instance
Virtual Camera Instance
Virtual Camera Instance

! .
LVCom Component Video For Windows

WDM Camera Driver

Figure 1 — Camera Software Components At Run-Time

Logitech Confidential -8-

chapter two

Getting Started with QuickCam® SDK

2.1 Installing the SDK

If you are reading this, there is a good chance you have already installed the QuickCam® SDK. If you haven’t, you
will need to obtain the SDK from Logitech. It is packaged as a downloadable self-extracting archive file:
QCSDK1.EXE.

The QuickCam® SDK can be downloaded from the Logitech website http:://developer.logitech.com. Follow the
instructions from this web site to install the SDK. If you have any questions or problems installing the
QuickCam® SDK, see the http://developer.logitech.com web site for assistance.

Once the QuickCam® SDK is installed the following folders are created:

\ QCSDK1
\ Docs
\'lnc
\ Redi st
\ Sanpl es
\ MFC
\ BadgeMaker
\ HydraQC
\ St udi oZero
\ Text Over
\ Vi dbert
\'bin
\ Vi sual Basic
\ VBDeno
\ VBMbt i on
\'bin
\ W n32
\ Feedback
\'bin

2.2 Removing the SDK

To remove the QuickCam® SDK, use the Control Panel “Add/Remove Programs” feature of Windows.

2.3 Sample Code

The SDK includes sample code for Microsoft Visual C++® (Win32), Microsoft Visual C++® (MFC), and Microsoft
Visual Basic® 5.0. All of this code is in \QCSDK1\Samples, in subdirectories named WIN32, MFC and Visual
Basic respectively. Compiling the C++ (Win32) and MFC samples requires Microsoft Visual C++® 6.0. Compiling
the Visual Basic samples require Microsoft Visual Basic® 5.0.

Microsoft Visual C++® (Win32) sample application

There is one C++ (Win32) sample that demonstrates using the QuickCam® SDK without a MFC (Microsoft
Foundation Classes) dependency: Feedback. This sample includes header files from \QCSDK1\inc.

Feedback — This C++ (Win32) sample demonstrates the QuickCam® SDK’s motion detection capabilities.
A simple motion magnitude graph is drawn depending on the amount of motion detected.

Logitech Confidential -9-

Microsoft Visual C++® (MFC) sample applications

There are five MFC samples that demonstrate using the QuickCam SDK via MFC (Microsoft Foundation Classes).

BadgeMaker — This MFC sample demonstrates using the QuickCam SDK'’s to create photo ID badges.
This sample uses the PictureToMemory method to save a picture into a memory buffer and overlay a
text-stamp date onto the picture.

HydraQC — This MFC sample demonstrates using the QuickCam SDK'’s to dynamically switch between
multiple cameras.

StudioZero— This MFC sample demonstrates using the QuickCam SDK’s to record a movie.

TextOver— This MFC sample demonstrates the QuickCam SDK'’s text overlay properties to apply a textual
string to a picture.

Vidbert— This MFC sample demonstrates the QuickCam SDK'’s video notification callback mechanism (see
StartVideoHook). Various effects modify the live video image received in the video callback.

Microsoft Visual Basic® sample applications

There are two Visual Basic samples that demonstrate using the QuickCam SDK.

VBDemo — This Visual Basic sample demonstrates the QuickCam SDK’s motion detection capabilities. A
simple motion magnitude graph is drawn depending on the amount of motion detected.

VBMotion — This Visual Basic sample demonstrates several of the QuickCam SDK'’s features including
movie recording, picture taking, and how to enable/disable the LED light on the camera.

2.4 Redistributable Files

The \QCSDK1\Redist folder of the QuickCam SDK contains the installation program and necessary files to re-
distribute the QuickCam SDK. This setup program must be executed on all machines which use the QuickCam®
SDK.

Logitech Confidential -10-

PART 1l

QuickCam® Video Portal API

O
<

long PrepareControl{ LPCTSTR strUniqueNamse, -_Q{ siriegestryley, long [Flags);

long GetCameraCount{long® plCount’; m

long GetCameraDescription{long IIndex, BSTR* SAEeEscrption);

long GetCameraTypellong lindex, long* ICamer)

ong QueryCameraConnected{long Iindex, long* nected);

long QueryRegistryCameraindexlong* (Index); n

long GetCameraStateflong lindex, long* plCamesa

ong ConnectCameraflong Undex);

long ConnectCameral(); o

long DisconnectCameral); q

ong LoadRegistrySettings(LPCTSTR strRegistry -

long SaveRegistrySettings(LPCTSTR strRegistryky:

long SetCameraPropertyLongdlong IProperty, lon pertyvalue

long GetCameraPropertyLong(long IProperty, (0N gasgligiopertyvalue);

long PictureToFike(long IFormatFowrCC, long IBitOeothg | PCTSTR stiFileMame, LPCTSTR striextS@amp);
long PictureToMemorylong FormatFourCC, ong th, ong IMemory, long* pMemorySize, LPCTSTR
long ':iLarL‘-1 ieRecording{LPLTS TR rhll_Nam LPC I.:-rH -:L Textstamp);

ong StopralassENideoPortal? ;. public CW

long StepCpptureAdd Frame)
long MovieRecordWriteSingleFrame(LPCTSTR strfileame, LPCTSTR strTextStamp):
vaid L-;Eh;ﬂtﬂﬁﬂﬁhﬁ‘dlﬁlt*rm 1
long Setvideatorp R ARE" IYNCREATE(EVidEoPE Iy i)
public:
CLSID const& GetClsid()

{
static CLSID const clsid = { 0x102225e5, Oxea25, 0x:

return clsid;

Logitech Confidential -11-

chapter three

Using the Video Portal API

This chapter begins with a tour of the visual aspects of the video portal control and continues on with some basic
functionality. In this chapter you will learn how to create an instance of the video portal and start previewing live
video. Examples of enabling and disabling user-interface elements are addressed. We also discuss saving images
to disk and memory, recording movies, and creating text overlays.

3.1 User Interface Tour

The following diagram shows an example video portal window. There are only two main visual elements for the
portal window: the preview area, and the status bar. The preview area is where live video is displayed. Within
the status bar there are three main elements: a text area, an image size button, and a camera settings button.
The text area of the status bar can show various actions in progress. Additionally, an application can send specific
text messages to be displayed in this area. The image size button allows quick and easy access to modifying the
image size received from the camera. Finally, the camera settings button allows users to quick access to camera
settings from camera selection to adjusting contrast.

video preview area

o ™ ol

-32|:|><24|:| - &

status bar camera settings button
adjust image size

3.2 Getting Started

This is where we begin examining how to instantiate the video portal control and display live video on the screen.
Getting video started with the video portal is easy. However, instantiating an ATL COM object without MFC is not
quite so simple. However, the source code to instantiate a windowed ATL COM object is included. If you can look
past the ATL glue, you'll realize that there are only a few lines of code to get video up and running in your
application.

1. Our first step however is to create a WIN32 Application project using Microsoft Visual Studio® 6.0.
Create the project based upon a “typical Hello World! application”.

2. Next, insert the following lines into stdafx.h. These files are needed to use ATL com objects.

Logitech Confidential -12-

#i ncl ude <atl base. h>

ext ern CConbdul e _Modul €;
#i ncl ude <at!| com h>

#i ncl ude <at| host. h>

#i ncl ude <ocidl . h>
#i ncl ude <assert. h>

The video control depends on including the “LVServerDefs.H” header file. LVServerDefs.H is located
in \QCSDK1\inc. Specify the \QCSDK1\inc directory in the preprocessor “Additional include
directories” setting. Select the Project->Settings menu item to display the “Project Settings” dialog
box. Select the C/C++ tab and choose “Preprocessor” in the category combo box. In the “Additional
include directories” edit box, add the following: \QCSDK21\inc

Insert the following lines in bolded face into your projects implementation .CPP file.

LRESULT CALLBACK WhdProc(HWND, Ul NT, WPARAM LPARAM ;
LRESULT CALLBACK About (HWND, Ul NT, WPARAM LPARAM ;

/1l the following two files are located in the inc directory of the QuickCam
/1 SDK. These two files contain interface definitions for the video portal
/'l control.

#i ncl ude "VPortal 2. h"

#include "VPortal 2_i.c"

#i ncl ude “LVServerDefs. H

/1 1VideoPortal is the interface to the video portal control

I Vi deoPortal * gpVideo = NULL;

/1 InitializeVideo is used to actually create an instance of the video
/'l portal control and obtain a |VideoPortal pointer to this interface.
BOCL InitializeVideo(HWND hwid);

/1 UnlnitializeVideo is used for clean up purposes
BOOL UninitializeVideo(void);

CConmVodul e _Mbdul e;
HWAD gMai nHwnd = NULL;
DWORD gdwAdvi seCooki e = 0;

//the follow ng CDriver class inplenents the connection point to the video
//portal control. This connection point allows the video control to commuicate
//with the application through the Portal Notification event. The

//Portal Notification nethod is called by the video portal control and is

/' handl ed here.

class CDriver :

public | Dispatchlnpl <_IVideoPortal Events, & ID__IVideoPortal Events,
&L1 Bl D_VPORTAL2Li b>,

publ i ¢ CContbj ect Root

{
public:
Chriver() {}
BEG N_COM MAP(CDri ver)
COM | NTERFACE_ENTRY(| Di spat ch)
COM _| NTERFACE_ENTRY(_I Vi deoPor t al Event s)
END_COM_MAP()

STDVETHOD(Por t al Not i fi cati on) (

I ong | Msg,
| ong | Parant,

Logitech Confidential -13-

| ong | Paran®,

| ong | Par anB)
{

/1 inplement any Portal Notification notification handling here.

switch(| Msg)

{

case NOTI FI CATI ONMSG_MOTI ON:
br eak;

case NOTI FI CATI ONMSG_MOVI ERECORDERROR:
br eak;

case NOTI FI CATI ONMSG_CAMERADETACHED:
br eak;

case NOTI FI CATI ONMSG_CAMERAREATTACHED:
br eak;

case NOTI FI CATI ONMSG_| MAGESI ZECHANGE:
br eak;

case NOTI FI CATI ONMSG_CAMERAPRECHANGE:
br eak;

case NOTI FI CATI ONMSG_CAMERACHANGEFAI LED:
br eak;

case NOTI FI CATI ONMSG_POSTCAMERACHANGED:
br eak;

case NOTI FI CATI ONMSG_CAMERBUTTONCLI CKED:
br eak;

case NOTI FI CATI ONMSG_VI DEOHOOK:
br eak;

case NOTI FI CATI ONMSG_SETTI NGDL GCL OSED:
br eak;

case NOTI FI CATI ONMSG_QUERYPRECANMERAMODI FI CATI ON:
br eak;

case NOTI FI CATI ONMSG_MovI ESI ZE:
br eak;

defaul t:
br eak;
}s

return S_OK;

}

b

/1 the follow ng defines the connection point interface pointer
CContvj ect <CDri ver >* gpDri ver;

i nt API ENTRY W nMai n(H NSTANCE hl nst ance,
H NSTANCE hPrevl nst ance,
LPSTR | pCndLi ne,
i nt nCndShow)

Insert the following lines in bolded face into the WinMain function.

i nt API ENTRY W nMai n(H NSTANCE hl nst ance,
H NSTANCE hPrevl nst ance,
LPSTR | pCndLi ne,
i nt nCndShow)

/llnitializes the COMIibrary on the current apartnent and identifies the
/'l concurrency nodel as single-thread apartnment (STA).
Colnitialize(NULL);

// Initialize the ATL nodul e

Logitech Confidential -14-

_Modul e. I ni t (NULL, hl nstance);

//lInitialize ATL control containnment code.
Atl AXWnlnit();

/] TODO. Pl ace code here.
MSG nsg;
HACCEL hAccel Tabl e;

/1 Initialize global strings

LoadString(hl nstance, I DS _APP_TITLE, szTitle, MAX_LOADSTRI NG ;

LoadStri ng(hl nstance, | DC_CONTROLTEST_X, szW ndowCl ass, MAX_LQADSTRI NG) ;
MyRegi st er O ass(hl nstance) ;

/1 Performapplication initialization:
if (!Initlnstance (hlnstance, nCndShow))

{

}
hAccel Tabl e = LoadAccel erators(hlnstance, (LPCTSTR)IDC_CONTROLTEST_X);

return FALSE;

/1 Main nessage | oop:
whil e (Get Message(&nrsg, NULL, 0, 0))

if (!Transl ateAccel erator(nsg. hwnd, hAccel Tabl e, &nsg))

Tr ansl at eMessage(&sQ) ;
Di spat chMessage(&rsQ) ;

}

UnlnitializeVideo(); // clean up the video control...
_Modul e. Term() ;
CoUninitialize();

return nsg. wPar am

Insert the following lines into the Initlnstance function.

BOCL | nitlnstance(H NSTANCE hl nstance, int nCndShow)
HWAD hwWhd;
hlnst = hlnstance; // Store instance handle in our global variable

hwhd = Creat eWndow(szW ndowd ass,
szTitl e,
W5_OVERLAPPEDW NDOW
CW _USEDEFAULT,
0,
CW_USEDEFAULT,
0,
NULL,
NULL,
hl nst ance,
NULL) ;

if (!hwd)

Logitech Confidential -15-

{

}

gMai nHwnd = hWd;
InitializeVideo(hwd);

return FALSE;

ShowW ndow(hwad, nCndShow) ;
Updat eW ndow(hwhd) ;

return TRUE;

Insert the following function into the project’s implementation file:

/1l IntializeVideo creates the video portal control instance, obtains the

/'l connection point object, and connects the video portal to a canera device.
BOCOL InitializeVideo(HWD hParent)

{

I ong | Resul t;
USES_CONVERSI ON,;

LPOLESTR st r GUI DVi deoPort al Acti veXControl = NULL;
StringFronCLSI D(CLSI D_Vi deoPortal, &strGU DVi deoPortal Acti veXControl);

/1l first we create a wi ndow which contains the video portal control.
// notice the class nane as “Atl AXxXWn"”, and the w ndow nanme
/1l is the CLSID of the video portal control itself...
HWD hwhdCtl = :: Creat eW ndow("Atl AxXWn",
OLE2T(str GUI DVi deoPort al Acti veXControl),
WS _CH LD | W5 _VISIBLE | W5_GROUP,
0,
0,
400,
400,
hPar ent ,
NULL,
.1 Get Modul eHandl e(NULL) ,
NULL);

CoTaskMenFree(strGUl DVi deoPortal Acti veXControl);
if(!'hwdCl)

return FALSE;
}

/1 the follow ng nethod retrieves the |VideoPortal interface fromthe HAWD
/1 of the wi ndow we just created.
if (FAILED(Atl AxGetControl (hwhdCtl, (IUnknown **)&gpVi deo)))

return FALSE;
}

/1 the following instantiates the CDriver connection point object
CConthj ect <CDri ver >: : Creat el nst ance(&pDri ver);

/1 the follow ng assigns the CDriver connection point to the video
/'l portal’s connection point.
if (FAILED (Atl Advi se(gpVi deo, gpDriver->Get Unknown(),

11 D__IVideoPortal Events, &gdwAdvi seCookie)))

{

Logitech Confidential -16-

gpVi deo- >Rel ease();
gpVi deo = NULL;
return FALSE;

}

/1 now we have everything we need to start communicating with the
/1l video portal. The gpVideo object is the interface to the video
/] portal

WCHAR wstrKey[] = L"HKEY_CURRENT USER\\ Sof t war e\ \ Test App1";
WCHAR wst r Uni que[] = L"Aaron";

BSTR bStrKey = ::SysAllocString(wstrKey);

BSTR bStr Uni que = ::SysAllocString(wstrUnique);

/1 the following line initializes the video control to be used by
/1l the application
if (FAILED(gpVi deo- >PrepareControl (bStrUnique, bStrKey, 0, & Result)))

:: SysFreeString(bStrKey);
:: SysFreeString(bStrUni que);

UnlnitializeVideo();
return FALSE;

}
. SysFreeString(bStrUni que);

gpVi deo- >put _Previ emvaxW dt h(320);
gpVi deo- >put _Previ ewaxHei ght (240);

/1l next we turn on the video portal’s status bar
if (FAILED(gpVi deo- >Enabl eUl El enment s(U ELEMENT_STATUSBAR,

0,

TRUE,

& Result)))
{
}

// next, we connect to a canera device
if (FAILED(gpVi deo- >Connect Canera2(& Result)))

:: SysFreeString(bStrKey);

UnlnitializeVideo();
return FALSE;

}
. SysFreeString(bStrKey);

/1 finally, we tell the video portal, to enable video preview
gpVi deo- >put _Enabl ePr evi ew(TRUE) ;
return FALSE;

Insert the following function into the project’s implementation file:

/1 Unlnitialize video perfornms cleanup of the video portal when
/it is no |onger needed.
BOCOL UninitializeVideo(void)

if (gpDriver)

{

At | Unadvi se(gpVi deo, I | D__I Vi deoPort al Events, gdwAdvi seCooki €e);
gpDriver = NULL;

Logitech Confidential -17-

}
if (gpVideo)
{

gpVi deo- >Rel ease();
gpVi deo = NULL;

}
return TRUE;
}
9. Next, compile and execute your project.

Let’s take the major steps that actually demonstrate using the video control one by one.

Initialize the Video Portal Interface

The first video portal method called is PrepareControl. This method establishes a connection from the video
portal to the video server. The PrepareControl method must always be called before any other video portal
method. It specifies a name, a registry key, and initialization flags. The most interesting parameter is the name.
All instances of the video portal with the same name share settings. For this reason, it is recommended that the
name is carefully chosen. The video portal uses the registry key to save specific settings, such as image size and
PictureSmart™ information. The video portal does not save global camera settings such as brightness, contrast
and brightness.

Configure the Portal User Interface

Next, we call the EnableUIElements method to enable the status bar. There are several visual elements, which
can be enabled or disabled. For instance, by default the following images sizes are supported: 160x120, 320x240,
and 640x480. (Note the QuickCam® Express camera does not support 640x480). You can forbid a user from
switching to 320x240 by using the EnablueUlElements method and passing UIELEMENT_320x240, with a status
of FALSE. For other examples, see the reference section on EnableUIElements.

Connect to a camera

We are now ready to establish a connection to a QuickCam® camera. The recommended method to do this is
ConnectCamera2. It establishes a camera connection with any camera that is currently in use by another portal
instance. If there is not a current camera connection, the last camera used is chosen. There is an additional
method ConnectCamera that allows connecting to a specific camera. However, this method should be used with
caution, since all video portal instances share the same camera. Connecting to a specific camera will cause all
video portals to start using that camera.

Open the video preview window

Once a camera connection has been successfully established, we are ready to turn on the video preview display.
The put_EnablePreview method enables video preview.

3.3 Taking Pictures

Next we examine how to use the video portal for saving pictures either to a file or into a memory buffer. First we
will examine taking a picture and saving it to a file. The following code fragment demonstrates how this is
accomplished.

{

WCHAR wFi | e[] = L“c:\\image_test.bmp”;
BSTR bStrFile 1 SysAllocString(wrile);

Logitech Confidential -18-

}

long IResult;
if (FAILED(gpVideo->PictureToFile(O, 24, bStrFile, NULL, &IResult)))

// handle error condition

3
::SysFreeString(bStrFile);

Currently, the only supported format for saving images to both memory and disk is 24 bit RGB, see the reference
section on PictureToFile for more information. Next we examine saving a picture to a memory buffer. The video
portal saves into memory a.BMP file as it would exist on disk. In the prototype below, we first call
PictureToMemory to receive the number of bytes required to store the image. After allocating a buffer of this
size, we call PictureToMemory a second time to perform the actual save operation.

i ong | Resul t;
long | Size;
if (FAILED(gpVi deo->Pi ctureToMenory(0, 24, 0, & Size, NULL, & Result)))
{

return FALSE;
}
BYTE * pBuffer = new BYTE[I Si ze] ;

if (FAILED(gpVi deo->Pi ctureToMenory(0, 24, (long)pBuffer, & Size, NULL,

& Result)))

delete []pBuffer; // delete the nenory we allocated...
return FALSE;

)/pBuffer now contains a .BWP file in nenory

del ete []pBuffer;
return TRUE;

3.4 Overlay Text

Our next task is to demonstrate how to overlay text on an image. You can specify color, font, font size, indicate
whether or not to use a text shadow, and finally whether the overlay is opaque or transparent.

{

WCHAR wFi | e[]
BSTR bStrFile

L“c:\\i nage_t est _overl ay. bnp”;
::SysAllocString(wFile);

WCHAR wDat €]]
BSTR bStrDate

L“Monday April 4, 20007;
::SysAllocString(wbDate);

WCHAR wFont []
BSTR bSt r Font

L“Arial”;
::SysAllocString(wFont);

gpVi deo- >put _St anpText Col or ((OLE_COLOR) RGB(255, 255, 255));
gpVi deo- >put _St anpFont Nane(bStrFont);

Logitech Confidential -19-

gpVi deo- >put _St anpPoi nt Si ze(10);
gpVi deo- >put _St anpText Shadow(FALSE);
gpVi deo- >put _St anpTr anspar ent Backgr ound(TRUE);

long | Resul t;
gpVi deo- >Pi ctureToFil e(0, 24, bStrFile, bStrDate, & Result);
:: SysFreeString(bStrFile);

:: SysFreeString(bStrDate);
:: SysFreeString(bStrFont);

The function prototype above demonstrates how to specify text stamp properties. Once the text stamp properties have been set,
you do not need to re-set them for each picture. The image below depicts the image saved to disk with these
parameters.

3.5 Recording Movies

Recording movies is a simple task when using the Video Portal. You have the option to specify a variety of
recording properties. It should be noted here that only one movie can be recorded at any given time, and while a
movie is being recorded, no pictures can be saved to either memory or to disk.

By default all movies are saved to disk at the fasted possible frame rate, which varies with the type of camera
used.

The following codes illustrates how to start and stop a movie recording session. This example is fairly
straightforward and uses the default recording properties supplied by the Video Portal.

void StartMvie(void)
{

long | Resul t;

WCHAR WFi | e[

] L \'sanpl e_novie_1.avi";
BSTR bStrFile

“c:\
::SysAllocString(wFile);

if (FAILED(gpVi deo->StartMvieRecording(bStrFile, NULL, & | Result)))

Logitech Confidential -20-

::SysFreeString(bStrFile);

return;
}
::SysFreeString(bStrFile);
}
voi d OnSt opMovi e(void)
{

gpVi deo- >St opMovi eRecor di ng() ;

void OnStart StepCapture(void)

3.6 Animation (step-capture, time-lapse) Movie Recording

Our next example is slightly more difficult than the one above. We take a look at how to record a ‘stop motion’ or
‘time-lapse’ movie. Essentially, it’s the same process as above, except a Video Portal method must be called for

each frame to add to the movie. The Video Portal maintains a recording-mode.
was fast-as-possible, which is its default mode. For stop-motion and time-lapse recording, we use the manual
triggered mode.

In the example above the mode

NULL, & Result)))

{
long | Resul t;
WCHAR wFil e[] = L“c:\\sanpl e_stepcapture.avi”;
BSTR bStrFile = ::SysAllocString(wrile);
/'l Select the manual triggered recording node:
gpVi deo- >put _Movi eRecor dvbde(STEPCAPTURE_MANUALTRI GGERED) ;
/'l Specify the playback rate for this nmovie — 15 FPS:
gpVi deo- >put _Movi ePl aybackFPS(15);
/] Doesn’t make sense to record audio in this node:
gpVi deo- >put _Movi eRecor dAudi o(FALSE) ;
if (FAILED(gpVi deo->St art Movi eRecor di ng(bStrFil e,
::SysFreeString(bStrFile);
return;
}
}

voi d OnAddFrane(void)

gpVi deo- >St epCapt ur eAddFr anme() ;

voi d OnSt opMovi e(void)

gpVi deo- >St opMovi eRecor di ng() ;

Logitech Confidential -21-

chapter four

Video Portal Interface Reference

The pages that follow list each method, property and notification event for the video portal. This is the first SDK
release of the video portal interface. Future versions of the video portal will be backward compatible with this

interface.

PrepareControl
GetCameraCount

GetCameraDescription
GetCameraType
QueryCameraConnected
QueryReqistryCameralndex
GetCameraState
ConnectCamera
ConnectCamera2
DisconnectCamera
LoadReqistrySettings
SaveRegistrySettings
SetCameraPropertylong
GetCameraPropertylLong
PictureToFile
PictureToMemory
StartMovieRecording
StopMovieRecording
StepCaptureAddFrame
MovieRecordWriteSingleFrame

SetVideoFormat
GetVideoFormat
GetlLastError
ShowCameraDlg
EnableUlElements
StartVideoHook

StopVideoHook

CameraConnected (get)

Cameralndex (get)

PictureSound (get/put)

StampTextColor (get/put)
StampFontName (get/put)
StampPointSize (get/put)
StampTextShadow (get/put)
StampTextShadowColor (get/put)
StampTransparentBackground (get/put)
StampBackgroundColor (get/put)
EnablePreview (get/put)
MovieVideoCompressionFOURCC (get/put)
MovieVideoCompressionKeyFramelnterval (get/put)
MovieVideoCompressionQuality (get/put)
MoviePlaybackFPS (get/put)
MovieAudioSamplesPerSecond (get/put)
MovieAudioChannels (get/put)
MovieAudioBitsPerSample (get/put)
MovieAudioCompressionFOURCC (get/put)
MovieAudioCompressionQuality (get/put)
MovieRecordAudio (get/put)
MovieRecordMode (get/put)
MovieCreateFlags (get/put)
MovieRecordingActiveLocal (get)
MovieRecordingActiveGlobal (get)
CameraState (get)
EnableMovieRecordErrorPrompt (get/put)
EnablePictureDiskErrorPrompt (get/put)
StatusBarText (put)

PreviewMaxWidth (get/put)
PreviewMaxHeight (get/put)

PortalNotification

NOTIFICATIONMSG_MOTION

NOTIFICATIONMSG_MOVIERECORDERROR
NOTIFICATIONMSG_CAMERADETACHED
NOTIFICATIONMSG_CAMERAREATTACHED
NOTIFICATIONMSG_IMAGESIZECHANGE
NOTIFICATIONMSG_CAMERAPRECHANGE
NOTIFICATIONMSG_CAMERACHANGEFAILED
NOTIFICATIONMSG_POSTCAMERACHANGED
NOTIFICATIONMSG_CAMERBUTTONCLICKED
NOTIFICATIONMSG_VIDEOHOOK
NOTIFICATIONMSG_SETTINGDLGCLOSED
NOTIFICATIONMSG_QUERYPRECAMERAMODIFICATION
NOTIFICATIONMSG_MOVIESIZE

Logitech Confidential -22-

Methods

PrepareControl (Method)

The PrepareControl method initializes an instance of the Video Portal.

HRESULT Prepar eCont rol (

BSTR st r Uni queNane, /1 unique nane for this portal instance
BSTR strRegi stryKey, /] registry key location

| ong | Fl ags, /1 initialization flags

| ong* pl Resul t

)

Parameters
strUniqueName

BSTR string that specifies a name for this video portal instance. Typically, each portal instance
should be given a name which is unique to all portal instances. You can specify NULL to have the
video portal generate a uniqgue name for you.

strRegistryKey

BSTR string that specifies the registry location in which values for this portal will be saved. If you
are not used to working with registry key values, you can specify
“HKEY_CURRENT_USER\Software\Logitech\name”, where name specifies a string identifying your
application. For example, “HKEY_CURRENT_USER\Software\Logitech\MyApp”.

The following data is saved automatically in the registry under the specified key.
. PictureSmart™ settings
Image size and depth
Picture sound
Text stamp settings
Audio format settings
Motion sensitivity setting

IFlags
This flag currently has no significance and must be 0.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error codes
available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.

Remarks

This method must be called before any other video portal method. However, properties can be set and
retrieved before calling this method. The video portal uses the registry-key parameter to save specific
instance information, such as image size, etc.

Example

The following code fragment demonstrates using the PrepareControl method.

Logitech Confidential -23-

WCHAR wstrKey[] = L"HKEY_CURRENT_USER\\ Sof t war e\\ MyApp";
WCHAR wst r Uni que[] = L"MyAppTest_001";

BSTR bStrKey = ::SysAllocString(wstrKey);
BSTR bStr Uni que = ::SysAllocString(wstrUnique);

ong | Result ;
f

I
if (!'FAILED(gpVi deo- >PrepareControl (bStrUnique, bStrKey, 0, & Result))
{

//unable to initialize video server conponent...
:: SysFreeString(bStrKey);
. SysFreeString(bStrUni que);

}

. SysFreeString(bStrKey);
. SysFreeString(bStrUni que);

Logitech Confidential -24-

GetCameraCount (Method)

The GetCameraCount method retrieves the number of camera devices present.

HRESULT Get Caner aCount (
| ong* pl Count,
| ong* pl Resul t

Parameters

plCount

Points to a long that receives the number of current camera devices.

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.
Remarks

None.

Example

The following code fragment demonstrates using the GetCameraCount method.

| ong | Canmer aCount = 0;

I ong | Resul t;

if (FAILED(gpVi deo- >Get Caner aCount (& Camer aCount, & Result)))
return ERROR;

printf(“there are $ld caneras avail able”, | CanmeraCount);

Logitech Confidential -25-

GetCamerabDescription (Method)

The GetCameraDescription method retrieves the camera description at a specific device index.

HRESULT Get Caner aDescri pti on(
I ong | I ndex,
BSTR* strDescription,
| ong* pl Resul t

Parameters
IIndex

Specifies the index of the camera: A number from O to N-1, where N is the camera count returned by
GetCameraCount.

strDescription

Points to a BSTR which receives the camera description.

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

This method is usually called when an application wishes to enumerate the cameras and connect to a
specific device.

Example

The following code fragment demonstrates using the GetCameraDescription method.

| ong | CanmeraCount = 0;

| ong | Resul t;

if (FAILED(gpVi deo- >Get Caner aCount (& Camer aCount, & Result)))
return ERROR;

char sBuffer[256];
for (longi =0 ; i < |CanmeraCount; i++)

BSTR bstrDesc = NULL;
if (FAILED(gpVi deo- >CGet Caner abDescription(i, &bdstrDesc)))
conti nue;

W deChar ToMul ti Byt e(CP_ACP, 0, bstrDesc, -1,
sBuffer, sizeof(sBuffer),
NULL, NULL) ;
printf(“canmera nane at index %d is %", i, sBuffer);

Logitech Confidential -26-

GetCameraType (Method)
The GetCameraType method retrieves the type of a camera.

HRESULT Get Caner aType(
I ong | I ndex,
| ong* pl Caner aType,
| ong* pl Resul t

)
Parameters

IIndex

Specifies the index of the camera: A number from O to N-1, where N is the camera count returned by
GetCameraCount.

plCameraType
Receives the camera type at the specified camera index.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.
Remarks

If this function is successful, the camera type will be one of the following values. These values are defined
in LVServerDefs.H header file.

CAMERA_UNKNOWN = 0,
CAMERA_QUICKCAM_VC =1,
CAMERA_QUICKCAM_QUICKCLIP =2,
CAMERA_QUICKCAM_PRO = 3,
CAMERA_QUICKCAM_HOME = 4,
CAMERA_QUICKCAM_PRO_B =5,
CAMERA_QUICKCAM_TEKCOM = 6,
CAMERA_QUICKCAM_EXPRESS=7,
CAMERA_QUICKCAM_FROG=8,
CAMERA_QUICKCAM_EMERALD=9,

Example

The following code fragment demonstrates using the GetCameraType method to find the QuickCam
Express camera index.

| ong | Camer aCount = 0;
if (FAILED(gpVi deo- >Get Caner aCount (& Camer aCount, & Result)))
return ERROR;

| ong | Caner aType;
for (longi =0 ; i < |CanmeraCount; i++)

if (FAILED(gpVi deo- >Cet CaneraType(i, & CaneraType, & Result)))
conti nue;

if ((CAMERA_TYPE) | CaneraType == CAMERA QUI CKCAM EXPRESS)
return SUCCESS;

Logitech Confidential -27-

QueryCameraConnected (Method)

The QueryCameraConnected determines if a camera at a specified index is connected already. The
term “connected” refers to a driver instance connection, not a physical one. A camera “connection” exists
when it is currently in use by an application.

HRESULT QueryCaner aConnect ed(
I ong | I ndex,
| ong* pl Connect ed,
| ong* pl Resul t

Parameters
lIndex
Specifies the index of the camera device.
plConnected
Receives a Boolean value of either TRUE (1) or FALSE (0).

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.
Remarks

This method can be used to determine if a camera is currently in use by another video portal before
connecting this portal instance to it as well.

Logitech Confidential -28-

QueryRegistryCameralndex (Method)

The QueryRegistryCameralndex is used to retrieve the index of the camera from the registry.

HRESULT Quer yRegi stryCamer al ndex(
I ong* pl I ndex,
| ong* pl Resul t

Parameters

plindex
Receives the camera index from the registry.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

This method can be used to determine the “last camera index used”, or likewise, the current one.

Logitech Confidential -29-

GetCameraState (Method)

The GetCameraState is used to get the state of the camera from the registry.

HRESULT Get Caner aSt at e(
I ong | I ndex,
| ong* pl Caner aSt at e,
| ong* pl Resul t

Parameters
IIndex
A long which indicates the camera index to query.
plCameraState
Feceives the camera state.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks
The camera state can be any one of the following values.

CAMERA_OK = 0,
CAMERA_UNPLUGGED = 1,
CAMERA_INUSE = 2,
CAMERA_ERROR = 3,
CAMERA_SUSPENDED = 4,
CAMERA_UNKNOWNSTATUS = 10,

Example

The following code fragment demonstrates using the GetCameraState method to find the first camera
which is unplugged (if any).

| ong | CanmeraCount = 0;
if (FAILED(gpVi deo- >Get Caner aCount (& Camer aCount, & Result)))
return ERROR;

| ong | Camer aSt at e;
for (longl =0 ; | < |CanmeraCount; |++)

if (FAILED(gpVi deo->Cet CaneraState(|, & | CaneraState)))
conti nue;

if ((CAMERA_STATUS) | Caner aType == CAMERA UNPLUGGED)
return SUCCESS;

Logitech Confidential -30-

ConnectCamera (Method)

The ConnectCamera method establishes a connection to a specific camera device.

HRESULT Connect Caner a(
I ong | I ndex,
| ong* pl Resul t

Parameters
lIndex
Specifies the index of the camera device to connect to.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Care should be used when calling this method. Connecting to a specific camera causes all other portal
instances to start using the new camera. Consider using the ConnectCamera2 method instead, it's
designed to work in a friendlier manner.

Example

The following code fragment demonstrates using the ConnectCamera method to connect to a QuickCam
Express.

| ong | CanmeraCount = 0;

| ong | Resul t;

if (FAILED(gpVi deo- >CGet Caner aCount (& CanmeraCount, | Result)))
return ERROR;

| ong | Caner aType;
for (longl =0 ; | < |CanmeraCount; |++)

if (FAILED(gpVi deo- >Cet CaneraType(|, & CaneraType, & Result)))
conti nue;

if ((CAMVERA TYPE)| CaneraType == CAMVERA QUI CKCAM EXPRESS)

if (FAILED(gpVi deo->Connect(|)))
conti nue;

return SUCCESS;
}

return ERROR; // no such canera found

Logitech Confidential -31-

ConnectCamera2 (Method)

The ConnectCamera2 method establishes a connection to an appropriate camera device.

HRESULT Connect Caner a2(| ong* pl Resul t);

Parameters

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

This method will connect to the last camera device used. If no camera connection has ever been
established, the first valid camera will be connected. Otherwise, any valid camera will be connected.

This is the normal mechanism for connecting with a camera.

Example

The following code fragment demonstrates using the ConnectCamera2 method.

| ong | Canmer aCount = 0;
I ong | Resul t;

if (FAILED(gpVi deo- >Connect Caner a2(& Result)))
return ERROR;

return SUCCESS;

Logitech Confidential -32-

QuickCam® SDK 1.0 —-Win32 C++ version

DisconnectCamera (Method)

The DisconnectCamera method removes the current camera connection.

Parameters

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Typically, this method is not called, when the control is released, the camera is automatically
disconnected.

Logitech Confidential -33-

LoadRegistrySettings (Method)

The LoadRegistrySettings method loads instance-specific data from a registry key into the portal.

Typically, this method is not used.

HRESULT LoadRegi strySetti ngs(
BSTR st r Regi stryKey,
| ong* pl Resul t

Parameters
strRegistryKey
A BSTR string specifying a registry key.

plResult

Points to a long that receives the error code of the function. Currently, there are only two error

codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Normally this method is not called, as the Video Portal automatically saves and loads registry settings as

needed.

The following data is loaded from the registry using the specified key.

corrupt values are found, default settings are used.

PictureSmart™ settings
Image size and depth
Picture sound

Text stamp settings
Audio format settings
Motion sensitivity setting

Logitech Confidential -34-

If there is not data present or

SaveRegistrySettings (Method)

The SaveRegistrySettings method saves instance specific data into a registry key. Typically, this
method is not used.

HRESULT SaveRegi strySettings(
BSTR st r Regi stryKey,
| ong* pl Resul t

)

Parameters
strRegistryKey
BSTR string which specifies a registry key.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.
Return Values

S_OK = Success; All other values = Failure.

Remarks

Normally this method is not called, as the video control automatically saves and loads registry settings as
it needs to.

The following data is saved into the registry using the specified key.

PictureSmart™ settings
Image size and depth
Picture sound

Text stamp settings
Audio format settings
Motion sensitivity setting

Logitech Confidential -35-

SetCameraPropertyLong (Method)

The SetCameraPropertyLong sets a camera-specific property.

HRESULT Set Caner aPr opertyLong(
I ong | Property,
| ong | PropertyVal ue,
| ong* pl Resul t

Parameters
IProperty
Specifies the property to set. See Appendix A for details.
IPropertyValue
Specifies the new value of the property.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; O = Failure.

Return Values
S_OK = Success; All other values = Failure.
Remarks

This method is reserved for advanced users who wish to control features such as gain, brightness, and
contrast manually. See Appendix A for information on special camera properties and the cameras
supporting them.

Example

The following code fragment demonstrates using the SetCameraProperty method to turn on the LED
light of the camera, if it is supported.

| ong | PropertyVal ue;
| ong | Resul t;

if (FAILED(gpVi deo- >Cet Caner aPropertyLong(PROPERTY_LED, & | PropertyVal ue,
& Result)))
return PROPERTY_NOT_SUPPORTED;

gpVi deo- >Set Caner aPropertylLong(PROPERTY_LED, LED ON, & Result);
return SUCCESS;

Logitech Confidential -36-

GetCameraPropertyLong (Method)

GetCameraPropertyLong gets the value of a camera-specific property.

HRESULT Get Caner aPr opertyLong(
I ong | Property,
| ong* pl PropertyVal ue,
| ong* pl Resul t

Parameters
IProperty
Specifies the property to retrieve. See Appendix A for properties and property codes.
plPropertyValue
Points to a long that receives the property value.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Use this method to set specific camera property values. See Appendix A for information on camera
properties and the cameras supporting them.

Example

The following code fragment demonstrates using the GetCameraProperty method to determine if
PictureSmart™ is supported and enabled.

| ong | PropertyVal ue;
| ong | Resul t;
if (FAILED(gpVi deo- >Get Caner aPr opert yLong(PROPERTY_PI CTSMART _MCDE,
&l PropertyVval ue)))
return PROPERTY_NOT_SUPPORTED;

printf(“ PictureSmart ™is % enabl ed\n”,
| PropertyVvalue ? “currently”, “not”);

Logitech Confidential -37-

PictureToFile (Method)

PictureToFile captures one frame from the currently connected camera writes it to a file.

HRESULT Pi ct ureToFi | e(
| ong | For mat Four CC,
| ong | Bi t Dept h,
BSTR strFi | eNang,
BSTR st r Text St anp,
| ong* pl Resul t);

Parameters

IFormatFourCC

Specifies the format in which to save to picture. Currently, the only format supported is RGB24
uncompressed, so this parameter must be 0.

IBitDepth

Specifies the bit depth of the picture. Currently, the only bit-depth supported is 24.

strFileName

BSTR string indicating the file to save the picture to. You must specify the .bmp extension.

strTextStamp

BSTR string indicating a textual stamp to overlay on the picture. This parameter can be NULL.

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Use this method to save an image to a file on disk. The only supported format is uncompressed 24-bit
RGB, which is written to disk in Windows BMP format.

Example

Savel mageToFi | e(voi d)

{
WCHAR wstrFile[] = L"image_test. bnp";
BSTR bStrFile = ::SysAllocString(wstrFile);
WCHAR wstrText[] = L"Hell o. brmp";
BSTR bStrText = ::SysAllocString(wstrText);
gpVi deo->Pi ctureToFil e(0, 24, bStrFile, bStrText, & Result);
1 SysFreeString(bStrFile);
1 SysFreeString(bStrText);
}

Logitech Confidential -38-

PictureToMemory (Method)

PictureToMemory gets an image from the camera and puts it into a buffer.

HRESULT Pi ct ur eToMenor y(
| ong | For mat Four CC,
| ong | Bi t Dept h,
I ong | Menory,
| ong* pl MenorySi ze,
BSTR st r Text St anp,
| ong* pl Resul t);

Parameters
IFormatFourCC
Specifies the format in which to save the image. Currently, the only format supported is RGB24
uncompressed, so this parameter must be 0.
IBitDepth
Specifies the bit depth of the image. Currently, the only bit depth supported is 24.
IMemory

Points to a buffer in memory where the image will be written (can be NULL, read on.)
pIMemorySize

Points to a long that receives the size of the image data. If the IMemory parameter is O (NULL), this
parameter can be used to determine how many bytes to allocate.

strTextStamp
BSTR string indicating a textual stamp to overlay on the picture. This parameter can be NULL.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

If IMemory is not NULL, an image is captured and stored as a BMP file in memory starting at IMemory.
Regardless of the value of IMemory, the long pointed to by plIMemorySize is set to the number of bytes
needed to hold the captured image data. Additionally, pIMemorySize must point to the size of the buffer
pointed to by IMemory. If the size pointed to by pIMemorySize is not large enough to store the image,
this method will fail.

Example

BYTE* pBuffer;
I ong | Si ze;
| ong | Resul t;

WCHAR wstrText[] = L"Hello Moni;
BSTR bStrText = ::SysAllocString(wstrText);

Logitech Confidential -39-

QuickCam® SDK 1.0 —-Win32 C++ version

gpVi deo- >Pi ct ureToMenory (0, 24, NULL, & Size, bStrText, & Result);

pBuffer = malloc(lSize); // allocate buffer
if (pBuffer) {
/1l Got a buffer, capture frame into it
gpVi deo- >Pi ct ureToMenory(0, 24, (long)pBuffer, & Size, bStrText,
& Result);

fr.ee.(pBuffer);
}

::SysFreeString(bStrText);

Logitech Confidential -40-

StartMovieRecording (Method)

The StartMovieRecording inititiates movie capture.

HRESULT St art Movi eRecor di ng(
BSTR strFi | eNang,
BSTR st r Text St anp,
| ong* pl Resul t

)l

Parameters

strFileName

BSTR string indicating the location in which to save the movie to. For example:
“c:\\windows\\desktop\\aaron.avi”. The filename specified must contain the extension “.avi".

strTextStamp

Not currently implemented, must be NULL.

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Typically, an application sets the movie recording mode, FPS, compressor, compressor quality, audio
settings, etc., before calling this method. Recording continues until StopMovieRecording is called or an
error occurs. When can error during a movie recording session which causes the recording to stop, the
NOTIFICATIONMSG_MOVIERECORDERROR notification message is sent to the container application.
For more information on receiving notification messages, see the section on Notifications.

Logitech Confidential -41-

QuickCam® SDK 1.0 —-Win32 C++ version

StopMovieRecording (Method)

The StopMovieRecording method ends movie capture.

Parameters

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -42-

StepCaptureAddFrame (Method)

The StepCaptureAddFrame method adds a frame to a manual step capture movie.

HRESULT St epCapt ur eAddFr ame(| ong* pl Resul t);

Parameters

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

This method is only available during a movie recording session when the movie mode is
STEPCAPTURE_MANUALTRIGGERED.

Logitech Confidential -43-

MovieRecordWriteSingleFrame (Method)

MovieRecordWriteSingleFrame opens an AVI file, appends a single frame, and closes the file.

HRESULT Movi eRecor dW i t eSi ngl eFr ame(
BSTR strFi | eNang,
BSTR st r Text St anp,
| ong* pl Resul t

Parameters
strFileName
BSTR string indicating the file to append to. For example: “c:\\windows\\desktop\\sample.avi”
strTextStamp
Not currently implemented, must be NULL.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

This method is suitable for creating a time-lapse movie, where there are at least a few seconds between
frames. Because of the overhead of opening and closing the AVI file, this method will always be much
slower than StepCaptureAddFrame.

Logitech Confidential -44-

QuickCam® SDK 1.0 —-Win32 C++ version

GetLastError (Method)

GetLastError retrieves the last Video Portal error. Currently, this method is not implemented.

Parameters

plError

Points to a long that receives the last error generated or detected within this Video Portal instance.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Use this method to retrieve the last generated error. Currently, this method will always return O.

Logitech Confidential -45-

SetVideoFormat (Method)

SetVideoFormat sets the specific format that the video control preview will use.

HRESULT Set Vi deoFor mat (
| ong | W dt h,
| ong | Hei ght,
| ong | Bi t Dept h,
| ong | For mat Four CC
| ong* pl Resul t

Parameters
IWidth
Specifies the width in pixels of the video. (Note 1)
IHeight
Specifies the height in pixels of the video. (Note 1)
IBitDepth
Specifies the bit depth of the video. Currently, the only supported bit depth is 24.
IFormatFourCC
Specifies the video format. Currently, the only supported format is RGB24, indicated by code 0.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.
Remarks
Use this method to specify the format of the video used by the control. The default format for the video
portal is 320x240, 24Bit RGB. However, once the video portal has been created, it will maintain the last

image size used the next time the portal is created.

Note 1: The only currently allowed sizes are: 160x120, 320x240, 640x480.
Note 2: All movies and pictures are saved using the current image size.

Logitech Confidential -46-

GetVideoFormat (Method)

GetVideoFormat retrieves the current video format used by the video control.

HRESULT Get Vi deoFor mat (
| ong* pl W dt h,
| ong* pl Hei ght,
| ong* pl Bi t Dept h,
| ong* | For mat Four CC,
| ong* pl Resul t

)
Parameters
plwidth
Points to a long value that receives the width in pixels of the video.
plHeight
Points to a long value that receives the height in pixels of the video.
pIBitDepth

Points to a long value that receives the bit depth of the video.
plFormatFourCC

Points to a long value that receives the four-character code specifying the format of the video.
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.
Remarks
The only possible video sizes are: 160x120, 320x240, 640x480

The only possible bit depth is: 24.
The only possible format is: uncompressed RGB (code 0).

Logitech Confidential -47-

ShowCameraDIlg (Method)

ShowCameraDlg invokes the camera settings dialog.

HRESULT ShowCaner aDl g(| ong* pl Resul t);

Parameters

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Typically this method is not used. Right clicking on the portal window opens the camera settings dialog
box. Additionally, when the status-bar is enabled, there is an icon which launches the camera settings
dialog box.

Logitech Confidential -48-

EnableUIElements (Method)

EnableUIElements enables and disables elements of the video portal user interface.

HRESULT Enabl eUl El enent s(
| ong | El enent,
| ong | Fl ags,
| ong | Enabl e,
| ong* pl Resul t

Parameters

IElements
Specifies a Ul element As follows:

Ul ELEMENT_640x480 = O
This Ul element indicates whether or not 640x480 is valid in the portal instance.

U ELEMENT_320x240 = 1
This Ul element indicates whether or not 320x240 is valid in the portal instance.

Ul ELEMENT_PCSMART = 2
This Ul element indicates whether or not the PictureSmart™ is valid in the portal instance.

Ul ELEMENT_STATUSBAR = 3

This Ul element indicates whether or not the status bar should be displayed below the portal window.
Note that if the status bar is not enabled, there is no point to enabling UIELEMENT_UI below,
because the camera-settings controls are on the status bar and will be hidden.

U ELEMENT_U = 4

This Ul element indicates whether or not the camera dialog boxes can be invoked) from buttons on
the status bar. If this element is disabled and the status-bar is active, the status bar will become
disabled. Conversely, if the status bar is hidden (not enabled), this setting is irrelevant because the
buttons will be hidden.

Ul ELEMENT_CAMERA = 5
NOT IMPLEMENTED

IFlags

NOT IMPLEMTED
IEnable

Whether or not an element is to be enabled (1) or disabled (0).
plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.
Remarks

Typically, a developer will only enable or disable the status bar. Enabling and disabling the other Ul
elements is a more advanced feature.

Logitech Confidential -49-

StartVideoHook (Method)

StartVideoHook starts the video notification callback. The video notification callback (see
Notifications), enables video frames to be transferred from the video control to the calling application.
This allows applications direct access to video data in the fastest possible manner. You do not need to call
this method to receive other notification events such as motion events, etc.

HRESULT Start Vi deoHook(
I ong | Fl ag,
| ong* pl Resul t

Parameters

IFlag

Currently, this parameter is unused and must be set to zero.

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.
Remarks

This is an advanced feature and should be used with care. The video notification callback allows real-time
access to video data. This can be CPU intensive. Only use it when you need to catch the video frames
from the camera. For example, if you are writing a motion detector and you need access to the live video
stream. The StartVideoHook method would allow you to access real-time video data to perform a
motion detection algorithm.

Example

This fragment demonstrates using the StartVideoHook method to receive real-time video data.

I ong | Resul t;
gpVi deo- >St ar t Vi deoHook(0, & Resul t);

STDVETHOD(Por t al Noti fi cation) (

| ong | Msg,
| ong | Paramt,
| ong | Parant,

| ong | Par anB)
switch(| Msg)
{
case NOTI FI CATI ONMSG_VI DEOHOCK:

LPBI TMAPI NFOHEADER | pbi = (LPBI TMAPI NFOHEADER) | P1;
LPBYTE | pBytes = (LPBYTE) | P2;

unsigned long | TimeStanp = (unsigned | ong)| P3;

Logitech Confidential -50-

QuickCam® SDK 1.0 —-Win32 C++ version

StopVideoHook (Method)

The StopVideoHook ends the video notification callback.

Parameters

IFlag

Currently, this parameter is unused and must be set to zero.

plResult

Points to a long that receives the error code of the function. Currently, there are only two error
codes available. 1 = Success; 0 = Failure.

Return Values
S_OK = Success; All other values = Failure.

Remarks

Use this method to stop the video hook notification. See StartVideoHook.

Logitech Confidential -51-

Properties

get_CameraConnected (Property)

get_CameraConnected indicates if a camera is connected to this portal instance. The term “connection”
refers to a driver connection and not a physical hardware connection.

HRESULT get Caner aConnect ed(BOOL* pConnect ed) ;

Parameters

pConnected
Points to a BOOL value that receives the connected state of the video portal.

Return Values

S_OK = Success; All other values = Failure.

Remarks

pConnected points to a value containing one of the following values:

1 = a camera is currently connected.
0 = no camera is connected.

Logitech Confidential -52-

QuickCam® SDK 1.0 —-Win32 C++ version

get_Cameralndex (Property)

get_Cameralndex returns the index of the currently connected camera, if any.

Parameters

plindex

Points to a long value that receives the index of the currently connected camera, or “-1” if no camera
are currently connected.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -53-

QuickCam® SDK 1.0 —-Win32 C++ version

get_PictureSound (Property)

get_PictureSound returns the name of the sound file played when a picture is taken.

Parameters

pstrSound
Points to BSTR value that receives the name of the .wav sound file played when a picture is taken.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -54-

QuickCam® SDK 1.0 —-Win32 C++ version

put_PictureSound (Property)

The put_PictureSound property sets the name of the sound file to be played when a picture is taken.

Parameters

strSound

BSTR value specifying the name of the .wav sound file to play when a picture is taken.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -55-

get_StampTextColor (Property)

The get_StampTextColor property retrieves the text color used during text stamp operations.

HRESULT get _St anpText Col or (OLE_COLOR* pCol or);

Parameters

pColor
Points to an OLE_COLOR that receives the color of text overlay.

Return Values

S_OK = Success; All other values = Failure.

Remarks

OLE_COLOR can be cast as an COLORREF value.
See Section 3.4 Overlay Text.

Logitech Confidential -56-

put_StampTextColor (Property)

The put_StampTextColor property sets the text color used during text stamp operations.

HRESULT put _St anpText Col or (OLE_COLOR col or);

Parameters

color
An OLE_COLOR value specifying the color of text overlay.

Return Values

S_OK = Success; All other values = Failure.

Example

The following code fragment demonstrates using put_StampTextColor to specify the text stamp text
color.

COLORREF t ext Col or = RGB(O0, 0, 255);

gpVi deo- >put _St anpText Col or ((OLE_COLOR) t ext Col or);

The text stamp properties from the code
fragment above, produces a text overlay
as shown in the picture to the right.
Notice that the text color is blue, i.e.,
0,0,255.

Logitech Confidential -57-

QuickCam® SDK 1.0 —-Win32 C++ version

get_StampFontName (Property)

The get_StampFontName property retrieves the name of the font used in text stamp operations.

Parameters

pstrFontName
Points to a BSTR value that receives the name of the font used in text overlay operations.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -58-

put_StampFontName (Property)
The put_StampFontName property sets the name of the font used in text stamp operations.

HRESULT put _St anpFont Name(BSTR st r Font Nane) ;

Parameters
strFontName
BSTR value that specifies the name of the font to be used in text overlay operations.
Return Values
S_OK = Success; All other values = Failure.
Example
This fragment demonstrates using put_StampFontName to specify the text stamp font.

WCHAR wstrFont[] = L"Courier";
BSTR bStrFont = ::SysAllocString(bStrFont);

gpVi deo- >put _St anpFont Nane(bSt r Font) ;

gpVi deo- >put _St anpText Col or ((OLE_COLOR) RGB(O0, 0, 255));
gpVi deo- >put _St anpPoi nt Si ze(10);

gpVi deo- >put _St anpText Shadow(FALSE);

gpVi deo- >put _St anpTr anspar ent Backgr ound(TRUE);

::SysFreeString(bStrFont);

The text stamp properties from the code
fragment above produces a text overlay as
shown to the right. Notice that the font is
“Courier”.

-y

Logitech Confidential -59-

QuickCam® SDK 1.0 —-Win32 C++ version

get_StampPointSize (Property)

The get_StampPointSize property retrieves the point-size of the font used in text stamp operations.

Parameters

plFontSize
Points to a long value that receives the point-size of the font used in text overlay operations.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -60-

put_StampPointSize (Property)
The put_StampPointSize property sets the point-size of the font used in text stamp operations.

HRESULT put _St anpPoi nt Si ze(l ong | Font Si ze);

Parameters
IFontSize
A long value that specifies the point-size of the font to be used in text overlay operations.
Return Values
S_OK = Success; All other values = Failure.
Example
The following code fragment demonstrates using put_StampPointSize to specify font size.
gpVi deo- >put _St anpPoi nt Si ze(20);

WCHAR wstrFont[] = L"Arial";
BSTR bStrFont = ::SysAllocString(bStrFont);

gpVi deo- >put _St anpFont Nane(bStrFont);

gpVi deo- >put _St anpText Col or ((OLE_COLOR) RGB(O0, 0, 255));
gpVi deo- >put _St anpText Shadow(FALSE);

gpVi deo- >put _St anpTr anspar ent Backgr ound(TRUE);

::SysFreeString(bStrFont);

=

The text stamp properties from the code
fragment above, produces a text overlay
as shown in the picture to the right.
Notice that the font-size is large.

T D
. . .
L&) =
¥

¥

Logitech Confidential -61-

QuickCam® SDK 1.0 —-Win32 C++ version

get_StampTextShadow (Property)

The get_StampTextShadow property is used to determine whether or not overlay text is shadowed.

Parameters
pShadow
Points to a BOOL value that indicates whether or not text overlay is shadowed.
Return Values
S_OK = Success; All other values = Failure.
Remarks

None.

Logitech Confidential -62-

put_StampTextShadow (Property)
The put_StampTextShadow property specifies whether or not overlay text is shadowed.

HRESULT put _St anpText Shadow(BOOL bShadow) ;

Parameters

bShadow

A BOOL value that specifies whether or not to use a text shadow. 1 enables the text shadow; O
disables the text shadow.

Return Values

S_OK = Success; All other values = Failure.

Remarks
To set the color of the text shadow use the following property: put_StampTextShadowcColor.

Example

This code fragment demonstrates using put_StampTextShadow to specify whether or not to use a text
shadow.

gpVi deo- >put _St anpText Shadow(TRUE);
gpVi deo- >put _St anpText ShadowCol or ((OLE_COLOR) RGB(0, 0, 255);

gpVi deo- >put _St anpPoi nt Si ze(20);

WCHAR wstrFont[] = L"Arial";
BSTR bStrFont = ::SysAllocString(bStrFont);

gpVi deo- >put _St anpFont Nane(bStrFont);

gpVi deo- >put _St anpText Col or ((OLE_COLOR) RGB(255, 255, 255));
gpVi deo- >put _St anpText Shadow(TRUE);

gpVi deo- >put _St anpTr anspar ent Backgr ound(TRUE);

::SysFreeString(bStrFont);

The text stamp properties from the code
fragment above, produces a text overlay
as shown in the picture to the right.
Notice that the text overlay contains a
blue shadow.

gy

Logitech Confidential -63-

get_StampTextShadowColor (Property)
The get_StampTextShadowColor property retrieves the color of the overlay text shadow.

HRESULT get _St anpText ShadowCol or (OLE_COLOR* pShadowCol or) ;

Parameters

pShadowColor
Points to an OLE_COLOR value that indicates the color of shadowed text.
Return Values
S_OK = Success; All other values = Failure.
Remarks

OLE_COLOR can be cast as an COLORREF value.
See Section 3.4 Overlay Text.

Logitech Confidential -64-

put_StampTextShadowColor (Property)
The put_StampTextShadowcColor property sets the color of the shadow (if any) for overlay text.

HRESULT put _St anpText ShadowCol or (OLE_COLOR t ext ShadowCol or);

Parameters
textShadowColor
An OLE_COLOR value that specifies the color of shadowed text.
Return Values
S_OK = Success; All other values = Failure.
Example

The following code fragment demonstrates using put_StampTextShadowColor to specify the color of
the text shadow.

gpVi deo- >put _St anpText ShadowCol or (RGB(0, 0, 255);
gpVi deo- >put _St anpText Shadow(TRUE);

gpVi deo- >put _St anpPoi nt Si ze(20);

WCHAR wstrFont[] = L"Arial";
BSTR bStrFont = ::SysAllocString(bStrFont);

gpVi deo- >put _St anpFont Nane(bStrFont);

gpVi deo- >put _St anpText Col or ((OLE_COLOR) RGB(255, 255, 255));
gpVi deo- >put _St anpText Shadow(TRUE);

gpVi deo- >put _St anpTr anspar ent Backgr ound(TRUE);

::SysFreeString(bStrFont);

=

The text stamp properties from the code
fragment above, produces a text overlay
as shown in the picture to the right.
Notice that the text overlay contains a
blue shadow.

-y

Logitech Confidential -65-

get_StampTransparentBackground (Property)

The get_StampTransparentBackground property is used to determine whether or not overlaid text is
transparent or opaque during text stamp operations.

HRESULT get _St anpTr anspar ent Backgr ound(BOOL* pTransparent);

Parameters

pTransparent

Points to a BOOL value indicating whether or not the background of overlaid text is transparent or
opaque.

Return Values
S_OK = Success; All other values = Failure.
Remarks
pTransparent points to a BOOL which indicates whether or not overlaid text is transparent or opaque. The

BOOL pTransparent points to is 1 if transparent, and O if opaque. When the background is opaque, its
color is determined by put_StampBackgroundColor.

Logitech Confidential -66-

put_StampTransparentBackground (Property)

The put_StampTransparentBackground property specifies whether or not overlaid text is transparent
or opaaue durina text stamo operations

HRESULT put _St anpTr anspar ent Backgr ound(BOOL bTr ansparent);

Parameters

bTransparent

A BOOL value specifying whether or not the background of overlaid text is transparent or opaque. 1
(TRUE) indicates a transparent background; O (FALSE) indicates an opaque background

Return Values
S_OK = Success; All other values = Failure.
Example

The following code fragment demonstrates using put_StampTransparentBackground to specify
whether or not the text stamp is opaque or transparent. This example specifies the text stamp to be
opaque.

gpVi deo- >put _St anpTr anspar ent Backgr ound(FALSE) ;

gpVi deo- >put _St anpBackgr oundCol or ((OLE_COLOR) RGB(O0, 0, 255);
gpVi deo- >put _St anpText Shadow(FALSE);
gpVi deo- >put _St anpPoi nt Si ze(20);

WCHAR wstrFont[] = L"Arial";
BSTR bStrFont = ::SysAllocString(bStrFont);

gpVi deo- >put _St anpFont Nane(bStrFont);
gpVi deo- >put _St anpText Col or ((OLE_COLOR) RGB(255, 255, 255));
gpVi deo- >put _St anpText Shadow(TRUE);

::SysFreeString(bStrFont);

The text stamp properties from the code
fragment above, produces a text overlay
as shown in the picture to the right.
Notice that the text overlay is not
transparent and the background color is
blue.

= mmee

Logitech Confidential -67-

get_StampBackgroundColor (Property)
The get_StampBackgroundColor property retrieves the color of the text overlay background.

HRESULT get _St anpBackgr oundCol or (OLE_COLOR* pBackgr oundCol or) ;

Parameters

pBackgroundColor

Points to an OLE_COLOR value that indicates the background color of an opaque background used
during text stamp operations.

Return Values

S_OK = Success; All other values = Failure.

Remarks

The property is only used if the overlay text background is not transparent. See
put_StampTransparentBackground

OLE_COLOR can be cast as an COLORREF value.
See Section 3.4 Overlay Text.

Logitech Confidential -68-

put_StampBackgroundColor (Property)

The put_StampBackgroundColor property sets the background color used during overlay text stamp
operations.

HRESULT put _St anpBackgr oundCol or (OLE_COLOR backgr oundCol or) ;

Parameters

backgroundColor

An OLE_COLOR that specifies the background color of an opaque background used during text stamp
operations.

Return Values

S_OK = Success; All other values = Failure.

Remarks

This color is only used if the overlay text background is not transparent. See
put_StampTransparentBackground

Example

The following code fragment demonstrates using the put_StampBackgroundColor method to specify the
color of an opaque background.

gpVi deo- >put _St anpBackgr oundCol or ((OLE_COLOR) RGB(255, 0, 0) ;
gpVi deo- >put _St anpTr anspar ent Backgr ound(FALSE) ;

m _cVi deo. put _St anpBackgr oundCol or (RGB(0, 0, 255) ;

gpVi deo- >put _St anpText Shadow(FALSE);
gpVi deo- >put _St anpPoi nt Si ze(20);

WCHAR wstrFont[] = L"Arial";
BSTR bStrFont = ::SysAllocString(bStrFont);

gpVi deo- >put _St anpFont Nane(bStrFont);
gpVi deo- >put _St anpText Col or ((OLE_COLOR) RGB(255, 255, 255));
gpVi deo- >put _St anpText Shadow(TRUE);

::SysFreeString(bStrFont);

The text stamp properties from the code
fragment above, produces a text overlay
as shown in the picture to the right.
Notice that the text overlay is not
transparent and the background color is
red.

gy

Logitech Confidential -69-

QuickCam® SDK 1.0 —-Win32 C++ version

get_EnablePreview (Property)

The get_EnablePreview property indicates whether or not video preview is active.

Parameters

pPreview
Points to a BOOL value indicating whether or not video preview is active.

Return Values

S_OK = Success; All other values = Failure.

Remarks

1 = Video preview is enabled
0 = Video preview is disabled

Logitech Confidential -70-

QuickCam® SDK 1.0 —-Win32 C++ version

put_EnablePreview (Property)

The put_EnablePreview property enables or disables video preview.

Parameters

bPreview
A BOOL value specifying whether or not to enable/disable video preview.

Return Values

S_OK = Success; All other values = Failure.

Remarks

By default the preview is not enabled. You must enable the preview before you can see video.

Logitech Confidential -71-

get_MovieVideoCompressionFOURCC (Property)

The get_MovieVideoCompressionFOURCC property retrieves the current four-character code of the
VFW installable compressor used during movie recording.

HRESULT get Movi eVi deoConpr essi onFOURCC(| ong* pl Four CC) ;

Parameters

plFourCC

Points to a long value indicating the four-character code of the VFW installable compressor used
during movie recording.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -72-

put_MovieVideoCompressionFOURCC (Property)

The put_MovieVideoCompressionFOURCC property selects the video codec to use for recording.

HRESULT put Movi eVi deoConpr essi onFOURCC(| ong | Four CC) ;

Parameters

IFourCC

A long value indicating the four-character code of the VFW installable compressor to use during movie
recording.

Return Values

S_OK = Success; All other values = Failure.

Remarks

This property uses a four-character code to specify the VFW installable compressor to be used during
movie recording. To write raw RGB frames to disk, specify O (zero) for the compression parameter. If
you choose an installable compressor that cannot keep up with the desired frame rate, the resulting video
will be poor quality.

You can use the mmioFOURCC macro defined in “mmsystem.h” to specify an installable compressor to use
during video compression. For example the Intel Indeo 5.2 codec has a four-character code, which when
used with mmioFOURCC appears as follows:

I ong | Conmpressor = nm oFOURCC(‘1’,’V ,’5 ,’0")

The default compressor is Indeo 5.2 with factory compression settings.

Examples

This code fragment selects the Intel Indeo 5.2 installable compressor.

| ong | Conpressor = 0x30355649;
gpVi deo- >put _Movi eVi deoConpr essi onFOURCC(| Conpressor);

This code fragment specifies using no video compressor, which writes raw RGB frames to disk.

gpVi deo- >put _Movi eVi deoConpr essi onFOURCC(0);

Logitech Confidential -73-

get_MovieVideoCompressionKeyFramelnterval (Property)

get_MovieVideoCompressionKeyFramelnterval property retrieves the key frame interval rate used
during movie recording.

HRESULT get _Movi eVi deoConpr essi onKeyFr anmel nt erval (1 ong *pl Keyl nterval) ;

Parameters

plKeylnterval
Points to a long value indicating the key-frame interval used during movie recording.
Return Values
S_OK = Success; All other values = Failure.
Remarks

Retrieves the rate at which key frames are generated when recording a video. For example, 15 indicates
that a key frame is generated for every 15 frames recorded. Normally, this property is not used.

Logitech Confidential -74-

put_MovieVideoCompressionKeyFramelnterval (Property)

The put_MovieVideoCompressionKeyFramelnterval property sets the key frame interval rate used
during movie recording.

HRESULT put _Movi eVi deoConpr essi onKeyFr anel nt erval (1 ong | Keyl nterval);

Parameters

IKeylInterval
A long value specifying the key-frame interval used during movie recording.

Return Values

S_OK = Success; All other values = Failure.
Remarks

Setting this property sets the rate at which key frames are generated when recording a video. For
example, 15 indicates every 15 frames, 1 key frame is generated.

Logitech Confidential -75-

get_MovieVideoCompressionQuality (Property)

The get_MovieVideoCompressionQuality property retrieves the compression quality setting used
during movie recording.

HRESULT get _Movi eVi deoConpr essi onQual i ty(l ong* pl Quality);

Parameters
plQuality
Points to a long value which indicates the compression quality setting used during movie recording.
This value ranges from 0..10000.
Return Values
S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -76-

put_MovieVideoCompressionQuality (Property)

The put_MovieVideoCompressionQuality property sets the compression quality setting used during
movie recording.

HRESULT put _Movi eVi deoConpr essi onQuality(long | Quality);

Parameters
IQuality

A long value specifying the compression quality used during movie recording. This value ranges from
0..10000. If —1 is specified, the default compression setting is used.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -77-

get_MoviePlaybackFPS (Property)

The get_MoviePlaybackFPS property retrieves the FPS (frames per second) rate at which a movie
recorded with the video control will play back at.

HRESULT get Movi ePl aybackFPS(| ong* pl FPS);

Parameters
pIFPS
Points to a long value indicating the frames per second that a recorded video will play back.
Return Values
S_OK = Success; All other values = Failure.
Remarks

This property retrieves the FPS in which a recorded movie would playback. For example, if you record a
movie @ 30fps, it would naturally playback at 30fps. However, imagine recording an animation movie,
which you manually add frames to an AVI file. In this situation, are able to specify what the playback rate
of the animation would be. Thus, if you added a frame once every hour, you could specify a playback rate
of 15 FPS (frames per second) the video would play-back 15 hours worth of video every second.

Logitech Confidential -78-

put_MoviePlaybackFPS (Property)

The put_MoviePlaybackFPS property sets the FPS (frames per second) rate at which a movie recorded
with the video control will play back at.

HRESULT put Movi ePl aybackFPS(| ong | FPS);

Parameters

IFPS

A long value specifying the number of frames per second that a recorded video will play back.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Use this property to set the rate, in frames per second, at which a subsequent video will be recorded.

Exception: For single-frame (time-lapse or animation) movies, this setting has no effect on recording but
still determines the playback rate of the resulting movie when it is played later.

The following table details the currently supported cameras and their frame per second limit.

Camera 160x120 320x240 | 640x480
Logitech QuickCam Pro 30 FPS 30 FPS 32
Logitech QuickCam VC 30 FPS 15 FPS 3?
Logitech QuickCam Express 30 FPS 15 FPS N/A
Logitech QuickCam Home 30 FPS 25 Fpst 32

1. The Logitech QuickCam Home supports a quality compression setting. When this setting is optimize-speed the maximum
frames per second is 25. When set to optimize-quality the maximum frames per second is 15.

2. For cameras which support 640x480 mode, the maximum FPS depends on the speed in which video frames can be written to
disk. For faster machines, e.g.,. in excess of 333MHZ, the maximum FPS is 7. For slower machines it is 3 FPS.

This property specifies the FPS in which a recorded movie would playback. For example, if you record a
movie @ 30fps, it would naturally playback at 30fps. However, imagine recording an animation movie,
which you manually add frames to an AVI file. In this situation, are able to specify what the playback rate
of the animation would be. Thus, if you added a frame once every hour, you could specify a playback rate
of 15 FPS (frames per second) the video would play-back 15 hours worth of video every second.

Logitech Confidential -79-

get_MovieAudioSamplesPerSecond (Property)

The get_MovieAudioSamplesPerSecond property retrieves the audio sampling rate for movie
recording. Currently, this method is not implemented.

HRESULT get Movi eAudi oSanpl esPer Second(| ong* pl Audi oSanpl eRat €) ;

Parameters

plAudioSampleRate

Points to a long value which receives the audio sampling rate used during movie recording.

Remarks

NOT IMPLEMENTED, audio is currently recorded at 11,025 samples per second.

Logitech Confidential -80-

put_MovieAudioSamplesPerSecond (Property)
The put_MovieAudioSamplesPerSecond property sets the audio sampling rate for movie recording.

HRESULT put _Movi eAudi oSanpl esPer Second(| ong | Sanpl es) ;

Parameters

ISamples
A long value indicating the audio sampling rate used during movie recording.

Remarks

NOT IMPLEMENTED, audio is currently recorded at 11,025 samples per second.

Logitech Confidential -81-

get_MovieAudioChannels (Property)

The get_MovieAudioChannels property retrieves the number of audio channels used during movie
recording. This method is not currently implemented.

HRESULT get Movi eAudi oChannel s(| ong *pl Channel s)

Parameters

plSamples
Points to a long value that receives the number of audio channels used during movie recording.

Remarks

NOT IMPLEMENTED, audio is recorded with one audio channel (mono).

Logitech Confidential -82-

put_MovieAudioChannels (Property)

The put_MovieAudioChannels property sets the number of audio channels used during movie recording.
This method is not currently implemented.

HRESULT put _Movi eAudi oChannel s(Il ong | Channel s);

Parameters

IChannels

A long value that indicates the number of audio channels used during movie recording.
Remarks

NOT IMPLEMENTED, audio is recorded with one audio channel (mono).

Logitech Confidential -83-

get_MovieAudioBitsPerSample (Property)

get_MovieAudioBitsPerSample retrieves the bits per sample used for audio recording. This method is
not currently implemented.

HRESULT get Movi eAudi oBi t sPer Sanpl e(| ong* pl Sanpl eSi ze) ;

Parameters

plSampleSize

Points to a long value that receives the number of audio channels used during movie recording.

Remarks

NOT IMPLEMENTED, audio is recorded at 8 bits per sample.

Logitech Confidential -84-

put_MovieAudioBitsPerSample (Property)

The put_MovieAudioBitsPerSample property sets the bits per audio sample used for movie recording.
This method is not currently implemented.

HRESULT put Movi eAudi oBi t sPer Sanpl e(| ong | Sanpl eSi ze) ;

Parameters

ISampleSize

A long value that specifies the number of bits per audio sample used during movie recording.
Remarks

NOT IMPLEMENTED, audio is recorded at 8 bits per sample.

Logitech Confidential -85-

QuickCam® SDK 1.0 —-Win32 C++ version

get_MovieAudioCompressionFOURCC (Property)

This method is not currently implemented.

Remarks

NOT IMPLEMENTED, audio is not compressed by default.

Logitech Confidential -86-

QuickCam® SDK 1.0 —-Win32 C++ version

put_MovieAudioCompressionFOURCC (Property)

This method is not currently implemented.

Remarks

NOT IMPLEMENTED, audio is not compressed by default.

Logitech Confidential -87-

QuickCam® SDK 1.0 —-Win32 C++ version

get_MovieAudioCompressionQuality (Property)

This method is not currently implemented.

Remarks

NOT IMPLEMENTED, audio is not compressed by default.

Logitech Confidential -88-

QuickCam® SDK 1.0 —-Win32 C++ version

put_MovieAudioCompressionQuality (Property)

This method is not currently implemented.

Remarks

NOT IMPLEMENTED, audio is not compressed by default.

Logitech Confidential -89-

get_MovieRecordAudio (Property)

The get_MovieRecordAudio property determines whether or not audio will be recorded during movie
capture.

HRESULT get Movi eRecor dAudi o(BOOL * pbRecor dAudio);

Parameters

pbRecordAudio
Points to a BOOL value indicating whether or not audio is recorded during movie capture.

Return Values

S_OK = Success; All other values = Failure.

Remarks

None.

Logitech Confidential -90-

put_MovieRecordAudio (Property)

The put_MovieRecordAudio property specifies whether or not audio is recorded during movie capture.

HRESULT put _Movi eRecor dAudi o(BOOL bRecor dAudi 0) ;

Parameters
bRecordAudio
A BOOL value specifying whether or not to record audio during movie capture.
Return Values
S_OK = Success; All other values = Failure.
Remarks

0 means ‘do not record audio’. Any other value causes audio to be recorded during movie recording.
Audio recording is on by default.

Logitech Confidential -91-

get_MovieRecordMode (Property)

The get_MovieRecordMode property determines the mode used during movie capture. The “movie
mode” used determines how the movie (AVI file) is created and written to disk.

HRESULT get Movi eRecor dMbde(| ong* pl Movi eMbde) ;

Parameters
pIMovieMode
Points to a long value indicating the “movie mode” used during movie capture.
Return Values

S_OK = Success; All other values = Failure.

Remarks
The following movie modes are defined and can be found in LVServerDefs.H header file:
SEQUENCECAPTURE_FPS_USERSPECIFIED = 1,

SEQUENCECAPTURE_FPS_FASTASPOSSIBLE = 2,
STEPCAPTURE_MANUALTRIGGERED = 3,

See put_MovieRecordMode for more details.

Logitech Confidential -92-

put_MovieRecordMode (Property)

The put_MovieRecordMode property specifies the mode used during movie capture. The “movie mode”
used determines how the movie (AVI file) is created and written to disk.

HRESULT put _Movi eRecor dMode(| ong | Movi eMbde) ;

Parameters

IMovieMode
A long value specifying the “movie mode” used during movie capture.

Return Values
S_OK = Success; All other values = Failure.
Remarks

Use this property to select the movie record mode used while recording movies. The following modes are
currently defined and can be found in LVServerDefs.H header file:

SEQUENCECAPTURE_FPS_FASTASPOSSIBLE

This is the default recording mode. It indicates that video should be recorded at the maximum
frame rate supported by the camera and image size.

SEQUENCECAPTURE_FPS_USERSPECIFIED

This recording mode is used when the frame rate written to disk is to be specified by the user.
See put_MoviePlaybackFPS for related information.

STEPCAPTURE_MANUALTRIGGERED

This recording mode is used for both time-lapse and stop-motion movies. In this mode you open
the movie as usual with StartMovieRecording, then use StepCaptureAddFrame to add each
frame. You can use put_MoviePlaybackFPS to specify the frame rate at which the movie is to
play back. See Section 3.6 for example code.

Logitech Confidential -93-

get_MovieCreateFlags (Property)

The get_MovieCreateFlags property retrieves the movie creation flags for movies (AVI files).

HRESULT get Movi eCr eat eFl ags(| ong* pl Creat eFl ags);

Parameters
plCreateFlags
Points to a long value indicating creation flags used when creating a movie.
Return Values

S_OK = Success; All other values = Failure.

Remarks

The following creation flags are defined and can be found in LVServerDefs.H header file. See
put_MovieCreateFlags for more information.

MOVIECREATEFLAGS_CREATENEW 1
MOVIECREATEFLAGS_APPEND 2

Logitech Confidential -94-

put_MovieCreateFlags (Property)

put_MovieCreateFlags sets the creation flags for AVI files.

HRESULT put Movi eCreat eFl ags(| ong | Creat eFl ags) ;

Parameters
ICreateFlags
A long value indicating creation flags used when creating a movie.
Return Values

S_OK = Success; All other values = Failure.

Remarks

This property determines what happens when the portal attempts to create an AVI file and there is an
existing file of the same name.

MOVIECREATEFLAGS_CREATENEW always creates an AVI file, overwriting an existing file.
MOVIECREATEFLAGS_APPEND appends to an existing AVI file, or creates a new AVI file if there is no file
to append to.

The following creation flags are defined and can be found in LVServerDefs.H header file.

MOVIECREATEFLAGS_CREATENEW 1
MOVIECREATEFLAGS_APPEND 2

Logitech Confidential -95-

get_MovieRecordingActivelLocal (Property)

The get_MovieRecordingActivelLocal property determines if “this” video control is currently recording a
movie.

HRESULT get _Movi eRecor di ngActi veLocal (BOOL* pl RecordActive);

Parameters

plRecordActive

Points to a BOOL value indicating whether or not a movie is currently being recorded by “this” portal
instance.

Return Values
S_OK = Success; All other values = Failure.
Remarks

Only one Video Portal instance can record a movie at a time. This method allows you to determine if this
particular instance of Video Portal is recording. If recording is going on through another video portal, this
property will still return O.

See the get_MovieRecordingActiveGlobal property to find out if any video portal on the host system
(including this one) is recording.

Logitech Confidential -96-

get_MovieRecordingActiveGlobal (Property)

The get_MovieRecordingActiveGlobal property determines if a movie is being recorded by any video
portal instance.

HRESULT get _Movi eRecor di ngActi ved obal (BOOL* pl Acti ved obal) ;

Parameters

plActiveGlobal

Points to a BOOL value indicating whether or not a movie is currently being recorded by “any” portal
instance.

Return Values

S_OK = Success; All other values = Failure.

Remarks

Another portal instance could be currently recording a movie. The Video Portal only allows one instance to
record a movie at a time. This method allows you to determine if any instance of the portal on the host
system is currently recording a movie.

Logitech Confidential -97-

get_CameraState (Property)

The get_CameraState property determines the current state of the connected camera.

HRESULT get CaneraState(long *pl State);

Parameters
plState
Points to a long value indicating the current state of the connected camera.
Return Values

S_OK = Success; All other values = Failure.

Remarks

The video portal monitors the state of the camera at all times. Should the camera be unplugged from the
USB port, a notification event informs the application of the new unplugged status. Additionally, using this
method can also be helpful in determining your application’s course of action.

The camera state can be any one of the following values, which can be found in the LVServerDefs.H
header file:

CAMERA_OK
Indicates that everything is normal with the camera.

CAMERA_UNPLUGGED

Indicates that the camera has been unplugged from the USB port. When the camera is plugged back
into the computer, camera state will change to CAMERA_OK.

CAMERA_INUSE

Indicates that another application is using the camera. Camera applications, which do not use the
QuickCam SDK, cause this camera state to occur. However, the QuickCam SDK will soon provide for
mechanisms that allow even non-QuickCam SDK applications to share the camera.

CAMERA_ERROR

Indicates that a hardware or driver related problem has occurred.

CAMERA_SUSPENDED

Indicates that the computer has entered suspend mode. When the computer resumes from suspend
mode, the camera state will be correctly updated.

CAMERA_UNKNOWNSTATUS

This state is reserved.

Logitech Confidential -98-

get_EnableMovieRecordErrorPrompt (Property)

The get_EnableMovieRecordErrorPrompt property determines if error prompting is enabled during
movie capture.

HRESULT get _Enabl eMovi eRecor dEr r or Pronpt (BOOL* pErr or Pronpt) ;

Parameters
pErrorPrompt
Points to a BOOL value indicating whether or not movie error message prompting is enabled.
Return Values

S_OK = Success; All other values = Failure.

Remarks
When error prompting is enabled for movie recording, message boxes appear from the video portal

window describing the error. See the reference section on put_EnableMovieRecordErrorPrompt for
more information.

Logitech Confidential -99-

put_EnableMovieRecordErrorPrompt (Property)

The put_EnableMovieRecordErrorPrompt property enables or disables error prompting during movie
capture.

HRESULT put _Enabl eMovi eRecor dEr r or Pr onpt (BOOL bErr or Pronpt) ;

Parameters
bErrorPrompt
A BOOL value specifying whether or not to enable movie error message prompting.
Return Values
S_OK = Success; All other values = Failure.
Remarks

When error prompting is enabled for movie recording and an error occurs, the following error strings are
formatted in a message box. The string fitting the cause of the error is chosen.

Unable to open an audio device for recording. Either another application is using the audio device for
recording or the audio device is not working properly.

Another application is recording audio. Stop recording with this other application and then try to record
another video.

Unable to open the audio device for recording. The audio device is not installed or is not working
properly.

Unable to save video to %s. The "%s" device has been removed from the system. To save a video, plug
the camera back into the USB port.

Unable to save video to "%s". Another activity is currently recording a video.

Unable to save video to %s. The camera device is still waking up from suspend mode.

Unable to save video to %s. The camera device has been removed from the system. To save a video,
plug the camera back into the USB port.

Unable to save video to "%s". The "%s" camera device is currently in use by another application.

Unable to save video to "%s". The camera device is currently in use by another application.

Unable to save video to "%s". The camera device was not found or is not working properly. Check to
make sure the camera is properly plugged into the USB port.

Unable to save video to "%s". Another activity is currently recording a video.

Unable to save video "%s". The specified file is open and cannot be overwritten.

Unable to save video to "%os".

Unable to save video to "%s". Drive %s is write protected. Remove the write-protection before saving
another video.

Unable to save video to "%s". Drive %s is not accessible or is not ready.

Unable to save video to "%s". There are only %s bytes available on drive %s. Additional disk space is

Logitech Confidential -100-

needed to save a video.

Unable to save video "%s". The specified file is open and cannot be overwritten.

Unable to save video to "%s". Unable to find the specified path.

Unable to save video to "%s". The specified path and drive are inaccessible.

Logitech Confidential -101-

get_EnablePictureDiskErrorPrompt (Property)

The get_EnablePictureDiskErrorPrompt property determines if error prompting is enabled during
picture to disk operations.

HRESULT get _Enabl ePi ct ur eDi skErr or Pronpt (BOOL *pError Pronpt) ;

Parameters

pErrorPrompt
Points to a BOOL value indicating whether or not picture error message prompting is enabled.

Return Values
S_OK = Success; All other values = Failure.

Remarks

See the reference section on put_EnablePictureDiskErrorPrompt for more information.

Logitech Confidential -102-

put_EnablePictureDiskErrorPrompt (Property)

The put_EnablePictureDiskErrorPrompt property is used to enable/disable error prompting during
picture to disk operations.

HRESULT put _Enabl ePi ct ur eDi skError Pronpt (BOOL bErr or Pronpt) ;

Parameters
bErrorPrompt
A BOOL value specifying whether or not picture error message prompting is enabled.
Return Values
S_OK = Success; All other values = Failure.
Remarks

When error prompting is enabled for the picture to disk operation and an error occurs, one of the following
error strings is formatted in a message box. The string fitting the cause of the error is chosen

Unable to save picture to “%s”. The "%s" device has been removed from the system. To take a picture,
plug the camera back into the USB port.

Unable to save picture to "%s". The specified path and drive are inaccessible.

Unable to save picture to "%s". Drive %s is write protected. Remove the write-protection before saving
another picture.

Unable to save picture to "%s". Drive %s is not accessible or is not ready.

Unable to save picture to "%s". There are only %s bytes available on drive %s. Additional disk space is
needed to save a picture.

Unable to save picture to "%s". Unable to find the specified path.

Unable to save video to "%s". Drive %s is write protected. Remove the write-protection before saving
another video.

Unable to save picture to "%s". The specified file already exists and is marked as read-only.

Unable to save picture to "%s". The specified file name contains an invalid extension.

Unable to save picture to "%s".

Unable to save picture to "%s". The camera device was not found or is not working properly. Check to
make sure the camera is properly plugged into the USB port.

Unable to save picture to "%s". The "%s" camera device is currently in use by another application.

Unable to save picture to %s. The camera device has been removed from the system. To take a picture,
plug the camera back into the USB port.

Unable to save picture to "%s". The camera device is currently in use by another application.

Unable to save picture to “%s”. The camera device is still waking up from suspend mode.

Logitech Confidential -103-

QuickCam® SDK 1.0 —-Win32 C++ version

put_StatusBarText (Property)

The put_StatusBarText property specifies text to be displayed in the status bar of the Video Portal
window. This method is not currently implemented.

Remarks

NOT CURRENTLY IMPLEMENTED

Logitech Confidential -104-

get_PreviewMaxWidth (Property)

The get_PreviewMaxWidth property retrieves the current maximum preview display size of the video
portal window.

HRESULT get _Previ emvaxW dt h(l ong *pl MaxW dth);

Parameters

pIMaxWidth
Points to a long value indicating the maximum preview display width of the video portal window.

Return Values

S_OK = Success; All other values = Failure.
Remarks

The default and recommended preview size is 320x240. However, you can change the width to fit your
application needs. The streaming video preview will be scaled to fit within this size.

Logitech Confidential -105-

put_PreviewMaxWidth (Property)

The put_PreviewMaxWidth property sets the maximum width, in pixels, of the video preview window.

HRESULT put _Previ emvaxW dt h(| ong | MaxW dt h) ;

Parameters
IMaxWidth
A long value specifying the maximum preview display width of the video portal window.
Return Values
S_OK = Success; All other values = Failure.
Remarks

The default and recommended preview size is 320x240. However, you can change the width to fit your
application needs. The streaming video preview will be scaled to fit within this size.

Note that all conventional video formats have a width to height ratio of 4:3, so to avoid distortion of the
preview video, you are advised to set the PreviewMaxWidth and PreviewMaxHeight in the same 4:3 ratio.

Example

The following code fragment demonstrates how to change the preview width and height of the video
preview area.

gpVi deo- >put _Previ emvaxHei ght (480);
gpVi deo- >put _Previ emvaxW dt h(640);

Logitech Confidential -106-

get_PreviewMaxHeight (Property)

The get_PreviewMaxHeight property retrieves the current maximum preview display size of the video
portal window.

HRESULT get _Previ emvaxHei ght (I ong *pl MaxHei ght);

Parameters
plMaxHeight
Points to a long value indicating the maximum preview display height of the video portal window.
Return Values
S_OK = Success; All other values = Failure.
Remarks
Returns a long, which specifies the current preview window height.

The default and recommended preview size is 320x240. However, you can change the height to fit your
application needs. The streaming video preview will be scaled to fit within this size.

Logitech Confidential -107-

put_PreviewMaxHeight (Property)

The put_PreviewMaxHeight property sets the maximum height, in pixels, of the video preview window
— not counting the status bar.

HRESULT put _Previ emvaxHei ght (1 ong | MaxHei ght) ;

Parameters

IMaxHeight
A long value specifying the maximum preview display height of the video portal window.

Return Values

S_OK = Success; All other values = Failure.

Remarks

The default and recommended preview size is 320x240. However, you can change the height to fit your
application needs. The streaming video preview will be scaled to fit within this size.

Note that this maximum is for just the actual preview pane, and does not include the status bar if
enabled. Note also that all conventional video formats have a width to height ratio of 4:3, so to avoid
distortion of the preview, you should set PreviewMaxWidth and PreviewMaxHeight in the same 4:3 ratio.

Example

The following code fragment demonstrates how to change the preview width and height of the video
preview area. By default the video portals maximum preview height is 240, and the default maximum
width is 320.

Logitech Confidential -108-

Handling Notification Events
The video portal sends notification events to send information to the calling application. The video portal
contains a single notification method for handling all event messages. To add the event handler to your
project follow these steps:

1. Follow the instructions in section 3.2 Getting Started. This section describes adding the event
handler to your project.

2. The PortalNotification method described in section 3.2 is the notification callback to handle
event messages from the video portal control.

The event handler referenced in section 3.2 Getting Started.

STDVETHOD(Por t al Not i fi cati on) (

I ong | Msg,

| ong | Parant,
| ong | Paran®,
| ong | Par anB)

/1 inplement any Portal Notification notification handling here.

}

The first parameter IMsg indicates the ID of the notification event. The remaining parameters contain
notification specific information. The notification constants are listed below. Additionally, these events
definitions can be found in the LVServerDefs.H header file.

NOTIFICATIONMSG_MOTION
NOTIFICATIONMSG_MOVIERECORDERROR
NOTIFICATIONMSG_CAMERADETACHED
NOTIFICATIONMSG_CAMERAREATTACHED
NOTIFICATIONMSG_ IMAGESIZECHANGE
NOTIFICATIONMSG_CAMERAPRECHANGE
NOTIFICATIONMSG_CAMERACHANGEFAILED
NOTIFICATIONMSG_POSTCAMERACHANGED
NOTIFICATIONMSG_CAMERBUTTONCLICKED
NOTIFICATIONMSG_VIDEOHOOK
NOTIFICATIONMSG_SETTINGDLGCLOSED
NOTIFICATIONMSG_QUERYPRECAMERAMODIFICATION
NOTIFICATIONMSG_MOVIESIZE

NOTIFICATIONMSG_MOTION

This notification message is received during motion detection monitoring. To activate the motion detector,
use the SetCameraPropertyLong method (see SetCameraPropertyLong). The only parameter used in
the PortalNotification event handler for NOTIFICATIONMSG_MOTION is IParam1. This parameter
contains the percentage of movement within the current video frame as compared to previous frames.

NOTIFICATIONMSG_MOVIERECORDERROR

This notification message is received when an error occurs during movie a recording. The only parameter
used in the PortalNotification event handler for NOTIFICATIONMSG_MOVIERECORDERROR is IParam1.
This parameter specifies the error, which occurred while recording the movie.

The following errors are possible:

WRITEFAILURE_RECORDINGSTOPPED

Indicates general movie recording error caused by insufficient disk space or disk access.
Additionally, this error indicates that the AVI file contains valid information but was prematurely

stopped.

WRITEFAILURE_RECORDINGSTOPPED_FILECORRUPTANDDELETED

Logitech Confidential -109-

Indicates general movie recording error caused by insufficient disk space or disk access.
Additionally, this error indicates the AVI file did not close properly and had to be deleted.

WRITEFAILURE_CAMERA_SUSPENDED
Indicates movie recording was unable to continue due to the computer entering suspend mode.

WRITEFAILURE_CAMERA_UNPLUGGED
Indicates movie recording was unable to continue due to the camera being unplugged from the USB
port.

NOTIFICATIONMSG_CAMERADETACHED
This notification message is received the currently connected camera device is removed from the USB
port.

NOTIFICATIONMSG_CAMERAREATTACHED
This notification message is received a camera device is plugged into the computers USB port. This
message is only fired if the video portal is not currently connected to a camera.

NOTIFICATIONMSG_ IMAGESIZECHANGE

This notification message is received when the image size is changed from the video controls user-
interface controls. The IParaml parameter contains the width of the new image size and IParam2
contains the height of the new image size.

NOTIFICATIONMSG_CAMERAPRECHANGE
<NOT USED=>

NOTIFICATIONMSG_CAMERACHANGEFAILED
This notification message is received after an attempt to switch from one camera connection to another
fails. The index of the camera is passed in the IParam1 parameter.

NOTIFICATIONMSG_POSTCAMERACHANGED
This notification message is received after a switch from one camera connection to another is successful.
The index of the new camera is passed in the IParam1 parameter.

NOTIFICATIONMSG_CAMERBUTTONCLICKED
This notification message is received after the camera button (on supported cameras) is pressed.

NOTIFICATIONMSG_VIDEOHOOK

This notification message is received during video streaming. Video streaming allows direct access to
camera data through this notification message. To enable video streaming use the StartVideoHook
method.

IParam1
This parameter is a pointer to a BITMAPINFOHEADER structure

IParam2
This parameter is a pointer to the actual bytes of the bitmap data.

IParam3
This parameter contains the system time stamp of the video frame in milliseconds. The system time
is the time elapsed since Windows was started.

NOTIFICATIONMSG_SETTINGDLGCLOSED
<NOT USED>

NOTIFICATIONMSG_QUERYPRECAMERAMODIFICATION
<NOT USED=>

NOTIFICATIONMSG_MOVIESIZE

This notification message is received during movie recording to indicate the current size in bytes of the
recording video. The IParam3 contains the current size in bytes of the movie being written to disk.

Logitech Confidential -110-

Camera Properties
The QuickCam SDK provides mechanisms to control camera properties. Each camera supported by the
QuickCam SDK has various properties. Some of the camera properties are available in all Logitech
cameras, while others are not. Appendix A contains a matrix indicating camera properties and the
cameras which support them. All of these camera properties are accessed by the
SetCameraPropertyLong and GetCameraPropertyLong methods.

. PROPERTY_ORIENTATION
This property controls the orientation of the image. It can be any of the following values:

0 ORI ENTATI ONMODE_NORMAL
Indicates normal orientation

0 ORI ENTATI ONMODE_M RRORED
Indicates a mirrored orientation

0 ORI ENTATI ONMODE_FLI PPED
Indicates a flipped orientation

0 ORI ENTATI ONMODE_FLI PPED_AND_M RRORED
Indicates a flipped and mirrored orientation

. PROPERTY_BRIGHTNESSMODE
This property controls auto-brightness mode. When this property is set to
ADJUSTMENT_AUTOMATIC, auto-brightness is engaged, otherwise auto-brightness is turned off.
This property can be either ADJUSTMENT_MANUAL or ADJUSTMENT_AUTOMATIC.

. PROPERTY_BRIGHTNESS
This property is used to adjust brightness and is only available when auto-brightness is turned off
(see PROPERTY_BRIGHTNESSMODE). This property can range between 0..255.

. PROPERTY_CONTRAST
This property is used to adjust contrast. This property can range between 0..255.

. PROPERTY_COLORMODE
This property controls auto-color mode. When this property is set to ADJUSTMENT_AUTOMATIC,
auto-color is engaged; otherwise auto-color mode is turned off. This property can be either
ADJUSTMENT_MANUAL or ADJUSTMENT_AUTOMATIC.

. PROPERTY_REDGAIN
This property adjusts red saturation and is only available when auto-color is turned off (see
PROPERTY_COLORMODE). This property can range between 0..255.

. PROPERTY_BLUEGAIN
This property adjusts red saturation and is only available when auto-color is turned off (see
PROPERTY_COLORMODE). This property can range between 0..255.

. PROPERTY_SATURATION
This property adjusts saturation. This property can range between 0..255.

. PROPERTY_EXPOSURE
This property adjusts exposure. This property can range between 0..255.

. PROPERTY_RESET
This property is can only be set. It is used to reset a camera to its hardware defaults.

. PROPERTY_ANTIBLOOM
This property enables or disables anti-bloom. Blooming occurs in some Logitech cameras when
bright lights appear to cover the entire video image. This property can be either TRUE or FALSE.

. PROPERTY_LOWLIGHTFILTER

Logitech Confidential -111-

This property enables or disables low-light filtering within the image. This property can be either
TRUE or FALSE.

. PROPERTY_HUE
This property adjusts hue. This property can range between 0..255.

. PROPERTY_PORT_TYPE
This read-only property is used to retrieve the type of camera port connection.

. PROPERTY_PICTSMART_MODE
This property enables or disables PictureSmart™ mode. This property can be either TRUE or
FALSE.

. PROPERTY_PICTSMART_LIGHT
This property is used to indicate the light-filtering algorithm when PictureSmart™ is enabled.
This property can be any of the following:

0o Pl CTSMART_LI GHTCORRECTI ON_NONE
Indicates no light correction.

o Pl CTSMART_LI GHTCORRECTI ON_COOLFLORESCENT
Indicates a “blue” or “cool” florescent light.

o Pl CTSMART_LI GHTCORRECTI ON_WARMFL ORESCENT
Indicates a “red” or “warm” florescent light.

o Pl CTSMART_LI GHTCORRECTI ON_QUTSI DE
Indicates an outside light.

o Pl CTSMART_LI GHTCORRECTI ON_TUNGSTEN
Indicates a tungsten light.

. PROPERTY_MOTION_DETECTION_MODE
This property is used to enable/disable the motion detector. The motion detector sends
notification events via the PortalNotification event (see Notifications). This property can be
either TRUE or FALSE.

. PROPERTY_MOTION_SENSITIVITY
This property is used to set the sensitivity of the motion detector. This property can range
between 0..255.

. PROPERTY_WHITELEVEL
This property is used adjust the whiteness of an image and is only available when auto-white
leveling is turned off (see PROPERTY_AUTO_WHITELEVEL).

. PROPERTY_AUTO_WHITELEVEL
This property controls auto-white leveling mode. When this property is set to
ADJUSTMENT_AUTOMATIC, the auto-white level is engaged; otherwise auto-level mode is turned
off. This property can be either ADJUSTMENT_MANUAL or ADJUSTMENT_AUTOMATIC.

. PROPERTY_ANALOGGAIN
This property controls analog gainand is only available when auto-analog gain is turned off (see
PROPERTY_AUTO_ANALOGGAIN). This property can range between 0..255.

. PROPERTY_AUTO_ANALOGGAIN
This property controls auto-analog gain mode. When this property is set to
ADJUSTMENT_AUTOMATIC, the auto-analog gain is engaged; otherwise auto-analog gain mode is
turned off. This property can be either ADJUSTMENT_MANUAL or ADJUSTMENT_AUTOMATIC.

. PROPERTY_LOWLIGHTBOOST
This property enables/disables low-light boosting. This property can be either TRUE or FALSE.

. PROPERTY_COLORBOOST
This property enables/disables color boosting. This property can be either TRUE or FALSE.

Logitech Confidential -112-

. PROPERTY_ANTIFLICKER
This property sets the anti-flicker mode. This property can be any of the following values:
0 ANTI FLI CKER_OFF

Turns off anti-flicker

0 ANTI FLI CKER 50Hz
Sets anti-flicker to 50Hz

0 ANTI FLI CKER _60Hz
Sets anti-flicker to 60Hz

. PROPERTY_OPTIMIZATION_SPEED_QUALITY
This property sets the optimization setting. This property can be either OPTIMIZE_QUALITY,
which indicates a higher quality image (slower), or OPTIMIZE_SPEED, which indicates a faster
lower quality image.

. PROPERTY_LED
This property sets current state of a camera’s LED light. This property can be any of the

following values:
o LED OFF

Turns the LED light off.

o LED ON
Turns the LED light on.

o LED AUTO
The default LED light mode, which turns the LED light on when the camera is in use, and
off otherwise.

o LED MAX

Logitech Confidential -113-

QuickCam® SDK 1.0 — Win32 C++ Version

Appendix A

oud wedyngd yiepboy
swoy we3ynnd ysenboq
gem welynd yrauboy

ssaudxg wepynnd yrayuboy

PROPERTY_BRIGHTNESSMODE ADJUSTMENT_MANUALADJUSTMENT_AUTOMATIC
PROPERTY_CONTRAST 0..255
PROPERTY_REDGAIN 0..255

{ PROPERTY_BLUEGAIN (0.5 L
PROPERTY_SATURATION 0..255 :

| PROPERTY_EXPOSURE 0.6 e
PROPERTY_RESET NO FLAGS :
PROPERTY_ANTIBLOOM TRUE/FALSE

PROPERTY_PORT_TYPE PORTTYPE_UNKNOWNPORTTYPE_LPT_NIBBLE

PORTTYPE_LPT_BIDIRECTIONAL
PORTTYPE_LPT_ECP
PORTTYPE_LPT_ECPDMA
PORTTYPE_USB

PROPERTY_PICTSMART_LIGHT PICTSMART_LIGHTCORRECTION_NONE
PICTSMART_LIGHTCORRECTION_COOLFLORESCENT
PICTSMART_LIGHTCORRECTION_WARMFLORESCENT
PICTSMART_LIGHTCORRECTION_OUTSIDE
PICTSMART_LIGHTCORRECTION_TUNGSTEN

PROPERTY_MOTION_DETECTION_MODE TRUE/FALSE
PROPERTY_WHITELEVEL 0.255
PROPERTY_ANALOGGAIN 0.255
PROPERTY_LOWLIGHTBOOST TRUE/FALSE
PROPERTY_ANTIFLICKER TRUE/FALSE

Logitech Confidential -114-

