

Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 35 57 50 00 Fax: +47 35 57 54 01

LabVIEW MathScript
HANS-PETTER HALVORSEN, 2011.02.11

ii

Preface

This document explains the basic concepts of using LabVIEW MathScript.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

What is LabVIEW?

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and

development environment for a visual programming language from National Instruments. The

graphical language is named "G".

What is MATLAB?

MATLAB is a tool for technical computing, computation and visualization in an integrated

environment. MATLAB is an abbreviation for MATrix LABoratory, so it is well suited for matrix

manipulation and problem solving related to Linear Algebra.

MATLAB offers lots of additional Toolboxes for different areas such as Control Design, Image

Processing, Digital Signal Processing, etc.

What is MathScript?

MathScript is a high-level, text- based programming language. MathScript includes more than 800

built-in functions and the syntax is similar to MATLAB. You may also create custom-made m-file like

you do in MATLAB.

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW programming in

order to use MathScript. If you want to integrate MathScript functions (built-in or custom-made

m-files) as part of a LabVIEW application and combine graphical and textual programming, you can

work with the MathScript Node.

In addition to the MathScript built-in functions, different add-on modules and toolkits installs

additional functions. The LabVIEW Control Design and Simulation Module and LabVIEW Digital

Filter Design Toolkit install lots of additional functions.

You can more information about MathScript here: http://www.ni.com/labview/mathscript.htm

How do you start using MathScript?

You need to install LabVIEW and the LabVIEW MathScript RT Module. When necessary software is

installed, start MathScript by open LabVIEW:

http://home.hit.no/~hansha/
http://www.ni.com/labview/mathscript.htm

In the Getting Started window, select Tools -> MathScript Window...:

iv

Table of Contents

Preface ..ii

Table of Contents .. iv

1 Introduction to LabVIEW .. 1

1.1 Dataflow programming ... 1

1.2 Graphical programming ... 1

1.3 Benefits .. 2

1.4 LabVIEW MathScript RT Module ... 2

2 LabVIEW MathScript RT Module .. 3

3 LabVIEW MathScript ... 4

3.1 Introduction ... 4

3.2 Help ... 6

3.3 Examples .. 6

3.4 Useful commands .. 9

Calling functions In MathScript ... 9

User-Defined Functions In MathScript .. 10

Scripts .. 11

3.5 Flow Control .. 13

3.5.1 If-else Statement ... 13

3.5.2 Switch and Case Statement ... 13

3.5.3 For loop.. 14

3.5.4 While loop ... 14

3.6 Plotting .. 15

4 Linear Algebra Examples ... 17

v Table of Contents

Tutorial: LabVIEW MathScript

4.1 Vectors ... 17

4.2 Matrices ... 18

4.2.1 Transpose .. 18

4.2.2 Diagonal ... 19

4.2.3 Triangular... 20

4.2.4 Matrix Multiplication ... 20

4.2.5 Matrix Addition.. 21

4.2.6 Determinant .. 21

4.2.7 Inverse Matrices .. 22

4.3 Eigenvalues .. 23

4.4 Solving Linear Equations .. 24

4.5 LU factorization ... 25

4.6 The Singular Value Decomposition (SVD) .. 26

4.7 Commands ... 27

5 Control Design and Simulation ... 28

5.1 State-space models and Transfer functions .. 28

5.1.1 PID ... 29

5.1.2 State-space model ... 30

5.1.3 Transfer function ... 31

5.1.4 First Order Systems ... 32

5.1.5 Second Order Systems ... 33

5.1.6 Padé-approximation .. 35

5.2 Frequency Response Analysis.. 36

5.2.1 Bode Diagram .. 36

Time Response .. 40

6 MathScript Node... 42

vi Table of Contents

Tutorial: LabVIEW MathScript

6.1 Transferring MathScript Nodes between Computers ... 44

6.2 Examples .. 44

6.3 Exercises .. 48

7 MATLAB Script .. 49

Appendix A – MathScript Functions for Control and Simulation .. 50

1

1 Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and

development environment for a visual programming language from National Instruments. The

graphical language is named "G". Originally released for the Apple Macintosh in 1986, LabVIEW is

commonly used for data acquisition, instrument control, and industrial automation on a variety of

platforms including Microsoft Windows, various flavors of UNIX, Linux, and Mac OS X. The latest

version of LabVIEW is version LabVIEW 2009, released in August 2009. Visit National Instruments at

www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”. LabVIEW

offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow programming

The programming language used in LabVIEW, also referred to as G, is a dataflow programming

language. Execution is determined by the structure of a graphical block diagram (the LV-source code)

on which the programmer connects different function-nodes by drawing wires. These wires

propagate variables and any node can execute as soon as all its input data become available. Since

this might be the case for multiple nodes simultaneously, G is inherently capable of parallel

execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in

scheduler, which multiplexes multiple OS threads over the nodes ready for execution.

1.2 Graphical programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.

LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a

block diagram, a front panel, and a connector panel. The last is used to represent the VI in the block

diagrams of other, calling VIs. Controls and indicators on the front panel allow an operator to input

data into or extract data from a running virtual instrument. However, the front panel can also serve

as a programmatic interface. Thus a virtual instrument can either be run as a program, with the front

panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel

defines the inputs and outputs for the given node through the connector pane. This implies each VI

can be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging and

dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW

http://www.ni.com/

2 Introduction to LabVIEW

Tutorial: LabVIEW MathScript

programming environment, with the included examples and the documentation, makes it simple to

create small applications. This is a benefit on one side, but there is also a certain danger of

underestimating the expertise needed for good quality "G" programming. For complex algorithms or

large-scale code, it is important that the programmer possess an extensive knowledge of the special

LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW

development systems offer the possibility of building stand-alone applications. Furthermore, it is

possible to create distributed applications, which communicate by a client/server scheme, and are

therefore easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for accessing

instrumentation hardware. Drivers and abstraction layers for many different types of instruments

and buses are included or are available for inclusion. These present themselves as graphical nodes.

The abstraction layers offer standard software interfaces to communicate with hardware devices.

The provided driver interfaces save program development time. The sales pitch of National

Instruments is, therefore, that even people with limited coding experience can write programs and

deploy test solutions in a reduced time frame when compared to more conventional or competing

systems. A new hardware driver topology (DAQmxBase), which consists mainly of G-coded

components with only a few register calls through NI Measurement Hardware DDK (Driver

Development Kit) functions, provides platform independent hardware access to numerous data

acquisition and instrumentation devices. The DAQmxBase driver is available for LabVIEW on

Windows, Mac OS X and Linux platforms.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

1.4 LabVIEW MathScript RT Module

The LabVIEW MathScript RT Module is an add-on module to LabVIEW. With LabVIEW MathScript RT

Module you can:

 Deploy your custom .m files to NI real-time hardware

 Reuse many of your scripts created with The MathWorks, Inc. MATLAB® software and others

 Develop your .m files with an interactive command-line interface

 Embed your scripts into your LabVIEW applications using the MathScript Node

http://home.hit.no/~hansha/

3

2 LabVIEW MathScript RT

Module

You can work with LabVIEW MathScript through either of two interfaces: the “LabVIEW MathScript

Interactive Window” or the “MathScript Node”.

You can work with LabVIEW MathScript RT Module through both interactive and programmatic

interfaces. For an interactive interface in which you can load, save, design, and execute your .m file

scripts, you can work with the “MathScript Interactive Window”. To deploy your .m file scripts as part

of a LabVIEW application and combine graphical and textual programming, you can work with the

“MathScript Node”.

The LabVIEW MathScript RT Module complements traditional LabVIEW graphical programming for

such tasks as algorithm development, signal processing, and analysis. The LabVIEW MathScript RT

Module speeds up these and other tasks by giving users a single environment in which they can

choose the most effective syntax, whether textual, graphical, or a combination of the two. In

addition, you can exploit the best of LabVIEW and thousands of publicly available .m file scripts from

the web, textbooks, or your own existing m-script applications. LabVIEW MathScript RT Module is

able to process your files created using the current MathScript syntax and, for backwards

compatibility, files created using legacy MathScript syntaxes. LabVIEW MathScript RT Module can

also process certain of your files utilizing other text-based syntaxes, such as files you created using

MATLAB software. Because the MathScript RT engine is used to process scripts contained in a

MathScript Windows or MathScript Node, and because the MathScript RT engine does not support

all syntaxes, not all existing text-based scripts are supported.

LabVIEW MathScript RT Module supports most of the functionality available in MATLAB, the syntax is

also similar.

For more details, see http://zone.ni.com/devzone/cda/tut/p/id/3257

http://zone.ni.com/devzone/cda/tut/p/id/3257

4

3 LabVIEW MathScript

3.1 Introduction

Requires: MathScript RT Module

How do you start using MathScript? You need to install LabVIEW and the LabVIEW MathScript RT

Module. When necessary software is installed, start MathScript by open LabVIEW:

In the Getting Started window, select Tools -> MathScript Window...:

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file script

commands and see immediate results, variables and commands history. The window includes a

5 LabVIEW MathScript

Tutorial: LabVIEW MathScript

command-line interface where you can enter commands one-by-one for quick calculations, script

debugging or learning. Alternatively, you can enter and execute groups of commands through a script

editor window.

As you work, a variable display updates to show the graphical / textual results and a history window

tracks your commands. The history view facilitates algorithm development by allowing you to use the

clipboard to reuse your previously executed commands.

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also can enter

batch scripts in a simple text editor window, loaded from a text file, or imported from a separate text

editor. The “LabVIEW MathScript Window” provides immediate feedback in a variety of forms, such

as graphs and text.

Example:

6 LabVIEW MathScript

Tutorial: LabVIEW MathScript

[End of Example]

3.2 Help

You may also type help in your command window

>>help

Or more specific, e.g.,

>>help plot

3.3 Examples

I advise you to test all the examples in this text in LabVIEW MathScript in order to get familiar with

the program and its syntax. All examples in the text are outlined in a frame like this:

>>

…

7 LabVIEW MathScript

Tutorial: LabVIEW MathScript

This is commands you should write in the Command Window.

You type all your commands in the Command Window. I will use the symbol “>>” to illustrate that

the commands should be written in the Command Window.

Example: Matrices

Defining the following matrix

The syntax is as follows:

>> A = [1 2;0 3]

Or

>> A = [1,2;0,3]

If you, for an example, want to find the answer to

>>a=4

>>b=3

>>a+b

MathScript then responds:

ans =

 7

MathScript provides a simple way to define simple arrays using the syntax:

“init:increment:terminator”. For instance:

>> array = 1:2:9

array =

 1 3 5 7 9

The code defines a variable named array (or assigns a new value to an existing variable with the

name array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1

(the init value), increments with each step from the previous value by 2 (the increment value), and

stops once it reaches (or to avoid exceeding) 9 (the terminator value).

The increment value can actually be left out of this syntax (along with one of the colons), to use a

default value of 1.

>> ari = 1:5

ari =

8 LabVIEW MathScript

Tutorial: LabVIEW MathScript

 1 2 3 4 5

The code assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default

value of 1 is used as the incrementer.

Note that the indexing is one-based, which is the usual convention for matrices in mathematics. This

is atypical for programming languages, whose arrays more often start with zero.

Matrices can be defined by separating the elements of a row with blank space or comma and using a

semicolon to terminate each row. The list of elements should be surrounded by square brackets: [].

Parentheses: () are used to access elements and subarrays (they are also used to denote a function

argument list).

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =

 16 3 2 13

 5 10 11 8

 9 6 7 12

 4 15 14 1

>> A(2,3)

ans =

 11

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For

example, a submatrix taken from rows 2 through 4 and columns 3 through 4 can be written as:

>> A(2:4,3:4)

ans =

 11 8

 7 12

 14 1

A square identity matrix of size n can be generated using the function eye, and matrices of any size

with zeros or ones can be generated with the functions zeros and ones, respectively.

>> eye(3)

ans =

 1 0 0

 0 1 0

 0 0 1

>> zeros(2,3)

ans =

 0 0 0

 0 0 0

>> ones(2,3)

ans =

 1 1 1

 1 1 1

9 LabVIEW MathScript

Tutorial: LabVIEW MathScript

3.4 Useful commands

Here are some useful commands:

Command Description

eye(x), eye(x,y) Identity matrix of order x

ones(x), ones(x,y) A matrix with only ones

zeros(x), zeros(x,y) A matrix with only zeros

diag([x y z]) Diagonal matrix

size(A) Dimension of matrix A

A’ Inverse of matrix A

Calling functions In MathScript

MathScript includes more than 800 built-in functions that you can use, e.g., in a previous task you

used the plot function.

Example: Built-in Functions

Given the vector:

>>x=[1 2 5 6 8 9 3]

→ Find the mean value of the vector x.

→ Find the minimum value of the vector x.

→ Find the maximum value of the vector x.

The MathScript Code is:

x=[1 2 5 6 8 9 3]

mean(x)

min(x)

max(x)

[End of Example]

10 LabVIEW MathScript

Tutorial: LabVIEW MathScript

User-Defined Functions In MathScript

MathScript includes more than 800 built-in functions that you can use but sometimes you need to

create your own functions.

To define your own function in MathScript, use the following syntax:

function outputs = function_name(inputs)

% documentation

…

Here is the procedure for creating a a user-defined function in MathScript:

11 LabVIEW MathScript

Tutorial: LabVIEW MathScript

Scripts

A script is a sequence of MathScript commands that you want to perform to accomplish a task. When

you have created the script you may save it as a m-file for later use.

You may also have multiple Script Windows open at the same time by selecting “New Script Editor”

in the File menu:

12 LabVIEW MathScript

Tutorial: LabVIEW MathScript

This gives:

13 LabVIEW MathScript

Tutorial: LabVIEW MathScript

3.5 Flow Control

This chapter explains the basic concepts of flow control in MathScript.

The topics are as follows:

 If-else statement

 Switch and case statement

 For loop

 While loop

3.5.1 If-else Statement

The if statement evaluates a logical expression and executes a group of statements when the

expression is true. The optional elseif and else keywords provide for the execution of alternate

groups of statements. An end keyword, which matches the if, terminates the last group of

statements. The groups of statements are delineated by the four keywords—no braces or brackets

are involved.

Example: If-Else Statement

Test the following code:

n=5

if n > 2

 M = eye(n)

elseif n < 2

 M = zeros(n)

else

 M = ones(n)

end

[End of Example]

3.5.2 Switch and Case Statement

The switch statement executes groups of statements based on the value of a variable or expression.

The keywords case and otherwise delineate the groups. Only the first matching case is executed.

There must always be an end to match the switch.

Example: Switch and Case Statement

Test the following code:

n=2

switch(n)

14 LabVIEW MathScript

Tutorial: LabVIEW MathScript

 case 1

 M = eye(n)

 case 2

 M = zeros(n)

 case 3

 M = ones(n)

end

[End of Example]

3.5.3 For loop

The for loop repeats a group of statements a fixed, predetermined number of times. A matching end

delineates the statements.

Example: For Loop

Test the following code:

m=5

for n = 1:m

 r(n) = rank(magic(n));

end

r

[End of Example]

3.5.4 While loop

The while loop repeats a group of statements an indefinite number of times under control of a logical

condition. A matching end delineates the statements.

Example: While Loop

Test the following code:

m=5;

while m > 1

 m = m - 1;

 zeros(m)

end

[End of Example]

15 LabVIEW MathScript

Tutorial: LabVIEW MathScript

3.6 Plotting

This chapter explains the basic concepts of creating plots in MathScript.

Topics:

 Basic Plot commands

Example: Plotting

Function plot can be used to produce a graph from two vectors x and y. The code:

x = 0:pi/100:2*pi;

y = sin(x);

plot(x,y)

produces the following figure of the sine function:

[End of Example]

Example: Plotting

Three-dimensional graphics can be produced using the functions surf, plot3 or mesh.

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);

f = sinc(sqrt((X/pi).^2+(Y/pi).^2));

mesh(X,Y,f);

axis([-10 10 -10 10 -0.3 1])

16 LabVIEW MathScript

Tutorial: LabVIEW MathScript

xlabel('{\bfx}')

ylabel('{\bfy}')

zlabel('{\bfsinc} ({\bfR})')

hidden off

This code produces the following 3D plot:

[End of Example]

17

4 Linear Algebra Examples

Requires: MathScript RT Module

Linear algebra is a branch of mathematics concerned with the study of matrices, vectors, vector

spaces (also called linear spaces), linear maps (also called linear transformations), and systems of

linear equations.

MathScript are well suited for Linear Algebra.

4.1 Vectors

Given a vector x

Example: Vectors

Given the following vector

>> x=[1; 2; 3]

x =

 1

 2

 3

The Transpose of vector x:

>> x'

ans =

 1 2 3

[End of Example]

The Length of vector x:

18 Linear Algebra Examples

Tutorial: LabVIEW MathScript

Orthogonality:

4.2 Matrices

Given a matrix A:

Example: Matrices

Given the following matrix:

>> A=[0 1;-2 -3]

A =

 0 1

 -2 -3

[End of Example]

4.2.1 Transpose

The Transpose of matrix A:

Example: Transpose

Given the matrix:

>> A'

ans =

 0 -2

19 Linear Algebra Examples

Tutorial: LabVIEW MathScript

 1 -3

[End of Example]

4.2.2 Diagonal

The Diagonal elements of matrix A is the vector

Example: Diagonal

Find the diagonal elements of matrix A:

>> diag(A)

ans =

 0

 -3

[End of Example]

The Diagonal matrix Λ is given by:

Given the Identity matrix I:

Example: Identity Matrix

Get the 3x3 Identity matrix:

>> eye(3)

ans =

 1 0 0

 0 1 0

 0 0 1

20 Linear Algebra Examples

Tutorial: LabVIEW MathScript

[End of Example]

4.2.3 Triangular

Lower Triangular matrix L:

Upper Triangular matrix U:

4.2.4 Matrix Multiplication

Given the matrices and , then

where

Example: Matrix Multiplication

Matrix multiplication:

>> A=[0 1;-2 -3]

A =

 0 1

 -2 -3

>> B=[1 0;3 -2]

B =

 1 0

 3 -2

>> A*B

ans =

 3 -2

 -11 6

[End of Example]

Note!

21 Linear Algebra Examples

Tutorial: LabVIEW MathScript

4.2.5 Matrix Addition

Given the matrices and , then

Example: Matrix Addition

Matrix addition:

>> A=[0 1;-2 -3]

>> B=[1 0;3 -2]

>> A+B

ans =

 1 1

 1 -5

[End of Example]

4.2.6 Determinant

Given a matrix , then the Determinant is given:

Given a 2x2 matrix

Then

22 Linear Algebra Examples

Tutorial: LabVIEW MathScript

Example: Determinant

Find the determinant:

A =

 0 1

 -2 -3

>> det(A)

ans =

 2

Notice that

and

[End of Example]

Example: Determinant

Determinants:

>> det(A*B)

ans =

 -4

>> det(A)*det(B)

ans =

 -4

>> det(A')

ans =

 2

>> det(A)

ans =

 2

[End of Example]

4.2.7 Inverse Matrices

The inverse of a quadratic matrix is defined by:

if

23 Linear Algebra Examples

Tutorial: LabVIEW MathScript

For a 2x2 matrix we have:

The inverse is given by

Example: Inverse Matrices

Inverse matrix:

A =

 0 1

 -2 -3

>> inv(A)

ans =

 -1.5000 -0.5000

 1.0000 0

[End of Example]

Notice that:

→ Prove this in MathScript

4.3 Eigenvalues

Given , then the Eigenvalues is defined as:

Example: Eigenvalues

Find the Eigenvalues:

A =

 0 1

 -2 -3

>> eig(A)

ans =

 -1

 -2

24 Linear Algebra Examples

Tutorial: LabVIEW MathScript

[End of Example]

4.4 Solving Linear Equations

Given the linear equation

with the solution:

(Assuming that the inverse of A exists)

Example: Solving Linear Equations

Solving the following equation:

The equations

may be written

where

The solution is:

A =

 1 2

 3 4

>> b=[5;6]

b =

 5

 6

>> x=inv(A)*b

25 Linear Algebra Examples

Tutorial: LabVIEW MathScript

x =

 -4.0000

 4.5000

In MathScript you could also write “x=A\b”, which should give the same answer. This syntax can also

be used when the inverse of A don’t exists.

[End of Example]

Example: Solving Linear Equations

Illegal operation:

>> A=[1 2;3 4;7 8]

>> x=inv(A)*b

??? Error using ==> inv

Matrix must be square.

>> x=A\b

x =

 -3.5000

 4.1786

[End of Example]

4.5 LU factorization

LU factorization of is given by

where

L is a lower triangular matrix

U is a upper triangular matrix

The MathScript syntax is [L,U]=lu(A)

Example: LU Factorization

Find L and U:

>> A=[1 2;3 4]

>> [L,U]=lu(A)

L =

 0.3333 1.0000

 1.0000 0

U =

 3.0000 4.0000

26 Linear Algebra Examples

Tutorial: LabVIEW MathScript

 0 0.6667

[End of Example]

Or sometimes LU factorization of is given by

where

D is a diagonal matrix

The MathScript syntax is [L,U,P]=lu(A)

Example: LU Factorization

Find L, U and P:

>> A=[1 2;3 4]

A =

 1 2

 3 4

>> [L,U,P]=lu(A)

L =

 1.0000 0

 0.3333 1.0000

U =

 3.0000 4.0000

 0 0.6667

P =

 0 1

 1 0

[End of Example]

4.6 The Singular Value Decomposition

(SVD)

The Singular value Decomposition (SVD) of the matrix is given by

where

U is a orthogonal matrix

V is a orthogonal matrix

27 Linear Algebra Examples

Tutorial: LabVIEW MathScript

S is a diagonal singular matrix

Example: SVD Decomposition

Find S, V and D:

>> A=[1 2;3 4];

>> [U,S,V] = svd(A)

U =

 -0.4046 -0.9145

 -0.9145 0.4046

S =

 5.4650 0

 0 0.3660

V =

 -0.5760 0.8174

 -0.8174 -0.5760

[End of Example]

4.7 Commands

Command Description

[L,U]=lu(A)

[L,U,P]=lu(A)

LU Factorization

[U,S,V] = svd(A) Singular Value Decomposition (SVD)

28

5 Control Design and

Simulation

Using LabVIEW MathScript for Control Design purposes you need to install the “Control Design and

Simulation Module” in addition to the “MathScript RT Module” itself.

Use the Control Design MathScript RT Module functions to design, analyze, and simulate linear

controller models using a text-based language. The following is a list of Control Design MathScript RT

Module classes of functions and commands that LabVIEW MathScript supports.

Getting help about MathScript functions regarding the Control Design Toolkit (CDT), type “help cdt”

in the Command Window in the MathScript environment.

The following function classes exist:

We will go through some of the classes and function in detail below:

5.1 State-space models and Transfer

functions

29 Control Design and Simulation

Tutorial: LabVIEW MathScript

MathScript offers lots of functions for defining and manipulate state-space models and transfer

functions.

Class: contruct

Description:

Use functions in the construct class to construct linear time-invariant system models and to convert

between model forms.

Below we see the different functions available in the construct class:

Below we will give some examples of how to use the most import functions in this class.

5.1.1 PID

Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control algorithm

used in industry.

In PID control, you must specify a process variable and a setpoint. The process variable is the system

parameter you want to control, such as temperature, pressure, or flow rate, and the setpoint is the

desired value for the parameter you are controlling.

A PID controller determines a controller output value, such as the heater power or valve position.

The controller applies the controller output value to the system, which in turn drives the process

variable toward the setpoint value.

Then the PID controller calculates the controller action, u(t):

Where

30 Control Design and Simulation

Tutorial: LabVIEW MathScript

 Controller gain

 Integral time

 Derivative time

And is the error

SP – Setpoint

PV – Process Variable

Function: pid

Description:

Constructs a proportional-integral-derivative (PID) controller model in either parallel, series, or

academic form.

Examples:

Kc = 0.5;

Ti = 0.25;

SysOutTF = pid(Kc, Ti, 'academic');

[End of Example]

5.1.2 State-space model

A state-space model is just a structured form or representation of the differential equations for a

system.

A linear State-space model:

where x is the state vector and u is the input vector. A is called the system-matrix, and is square in all

cases.

Example:

31 Control Design and Simulation

Tutorial: LabVIEW MathScript

The differential equations:

May be written on state-space form:

Function: ss

Description:

This function constructs a continuous or discrete linear system model in state-space form. You also

can use this function to convert transfer function and zero-pole-gain models to state-space form.

Examples:

% Creates a state-space model

A = eye(2)

B = [0; 1]

C = B'

SysOutSS = ss(A, B, C)

% Converts a zero-pole-gain model to state-space form

z = 1

p = [1, -1]

k = 1

SysIn = zpk(z, p, k)

SysOutSS = ss(SysIn)

[End of Example]

5.1.3 Transfer function

The transfer function of a linear system is defined as the ratio of the Laplace transform of the output

variable to the Laplace transform of the input variable.

Function tf

Description:

This function creates a continuous or discrete linear system model in transfer function form. You also

can use this function to convert zero-pole-gain and state-space models to transfer function form.

32 Control Design and Simulation

Tutorial: LabVIEW MathScript

Examples:

>>s = tf('s')

This specifies that you want to create the continuous transfer function s / 1. After you enter this

command, you can use LabVIEW MathScript operands on this transfer function to define a

zero-pole-gain or transfer function model.

SysOutZPK = 4*(s + 2) / (s + 1)

This example constructs a zero-pole-gain model with a gain of 4, a zero at -2, and a pole at -1.

SysOutTF = (3*(s*s*s) + 2) / (4*(s*s*s*s) + 8)

This example constructs the transfer function model 3s^3 + 2 / 4s^4 + 8.

[End of Example]

5.1.4 First Order Systems

The following transfer function defines a first order system:

Where

 is the gain

 is the Time constant

Function sys_order1

Description:

This function constructs the components of a first-order system model based on a gain, time

constant, and delay that you specify. You can use this function to create either a state-space model

or a transfer function model, depending on the output parameters you specify.

Inputs:

K Specifies the gain matrix. K is a real matrix.

tau Specifies the time constant, in seconds, which is the time required for the model output to reach

63% of its final value. The default value is 0.

33 Control Design and Simulation

Tutorial: LabVIEW MathScript

delay Specifies the response delay of the model, in seconds. The default value is 0.

Examples:

K = 0.5;

tau = 1.5;

SysOutTF = sys_order1(K, tau);

[End of Example]

5.1.5 Second Order Systems

A standard second order transfer function model may be written like this:

Where

 is the gain

 (zetais the relative damping factor

 [rad/s] is the undamped resonance frequency.

Function sys_order2

Description:

This function constructs the components of a second-order system model based on a damping ratio

and natural frequency you specify. You can use this function to create either a state-space model or a

transfer function model, depending on the output parameters you specify.

Example:

Examples of how to use the sys_order2 function:

dr = 0.5

wn = 20

[num, den] = sys_order2(wn, dr)

SysTF = tf(num, den)

[A, B, C, D] = sys_order2(wn, dr)

SysSS = ss(A, B, C, D)

[End of Example]

Class: connect

34 Control Design and Simulation

Tutorial: LabVIEW MathScript

Description:

Use members of the connect class to connect systems models together in various configurations.

Below we see the different functions available in the connect class:

Function series

Description:

This function connects two system models in series to produce a model SysSer with input and output

connections you specify. The input models must be either continuous models or discrete models with

identical sampling times.

Example:

Here is an example of how to use the series function.

SysIn_1 = tf([1, 1], [1 -1, 3])

SysIn_2 = zpk([1], [1, -1], 1)

SysSer = series(SysIn_1, SysIn_2)

[End of Example]

Class: convert

Description:

Use members of the convert class to convert a continuous system model to a discrete model, convert

a discrete model to a continuous model, and resample a discrete model. You also can use members

of this class to incorporate delays into a system model.

Below we see the different functions available in the convert class:

35 Control Design and Simulation

Tutorial: LabVIEW MathScript

5.1.6 Padé-approximation

The Transfer function of a time-delay is:

In some situations it is necessary to substitute with an approximation, e.g., the

Padé-approximation:

Function: pade

Description:

This function incorporates time delays into a system model using the Pade approximation method,

which converts all residuals. You must specify the delay using the set function. You also can use this

function to calculate coefficients of numerator and denominator polynomial functions with a

specified delay.

Example:

Examples of how to use the pade function:

SysCon = zpk(1, 3.2, 6)

SysCon = set(SysCon, 'inputdelay', 6, 'outputdelay', 1.1)

SysDel = pade(SysCon, 2)

delay = 1.2

order = 3

[num, den] = pade(delay, order)

[End of Example]

36 Control Design and Simulation

Tutorial: LabVIEW MathScript

5.2 Frequency Response Analysis

The frequency response of a system is a frequency dependent function which expresses how a

sinusoidal signal of a given frequency on the system input is transferred through the system. Each

frequency component is a sinusoidal signal having a certain amplitude and a certain frequency.

The frequency response is an important tool for analysis and design of signal filters and for analysis

and design of control systems.

The frequency response can found experimentally or from a transfer function model.

The frequency response of a system is defined as the steady-state response of the system to a

sinusoidal input signal. When the system is in steady-state it differs from the input signal only in

amplitude (A) and phase angle (ω).

If we have the input signal:

The steady-state output signal will be:

A and is a function of the frequency ω o w may wr

For a transfer function

We have:

Where is the frequency response of the system, i.e., we may find the frequency response by

setting in the transfer function.

5.2.1 Bode Diagram

Bode diagrams are useful in frequency response analysis. The Bode diagram consists of 2 diagrams,

the Bode magnitude diagram, and the Bode phase diagram, .

37 Control Design and Simulation

Tutorial: LabVIEW MathScript

The -axis is in decibel (dB)

Where the decibel value of x is calculated as:

The -axis is in degrees (not radians)

Function: bode

Description:

This function creates the Bode magnitude and Bode phase plots of a system model. You also can use

this function to return the magnitude and phase values of a model at frequencies you specify. If you

do not specify an output, this function creates a plot.

Examples:

We have the following transfer function

We want to plot the Bode diagram for this transfer function:

In MathScript we could write:

num=[1];

den=[1,1];

H1=tf(num,den)

bode(H1)

[End of Example]

38 Control Design and Simulation

Tutorial: LabVIEW MathScript

Function: margin

Description:

This function calculates and/or plots the smallest gain and phase margins of a single-input

single-output (SISO) system model.

The gain margin indicates where the frequency response crosses at 0 decibels (“crossover

frequency”,).

 is also the bandwidth of the system

The phase margin indicates where the frequency response crosses -180 degrees (“crossover

frequency”,).

Examples:

The following example illustrates the use of the margin function.

num = [1]

den = [1, 5, 6]

H = tf(num, den)

margin(H)

[End of Example]

Example:

Given the following system:

We want to plot the Bode diagram and find the crossover-frequencies for the system using

MathScript.

We use the following functions: tf, bode, margins and margin.

 gmf is the gain margin frequencies, in radians/second. A gain margin frequency indicates

where the model phase crosses -180 degrees.

 gm Returns the gain margins of the system.

39 Control Design and Simulation

Tutorial: LabVIEW MathScript

 pmf Returns the phase margin frequencies, in radians/second. A phase margin frequency

indicates where the model magnitude crosses 0 decibels.

 pm Returns the phase margins of the system.

 We get:

Below we see the Bode diagram with the crossover-frequency and the gain margin and phase margin

for the system plotted in:

40 Control Design and Simulation

Tutorial: LabVIEW MathScript

[End of Example]

Time Response

Class: timeresp

Description:

Use members of the timeresp class to create generic linear simulations and time domain plots for

step inputs, impulse inputs, and initial condition responses.

Below we see the different functions available in the timeresp class:

Function: step

Description:

41 Control Design and Simulation

Tutorial: LabVIEW MathScript

This function creates a step response plot of the system model. You also can use this function to

return the step response of the model outputs. If the model is in state-space form, you also can use

this function to return the step response of the model states. This function assumes the initial model

states are zero. If you do not specify an output, this function creates a plot.

Example:

Given the following system:

We will plot the time response for the transfer function using the step function

The result is as follows:

The MathScript code:

H = tf([1, 1], [1, -1, 3])

step(H)

[End of Example]

42

6 MathScript Node

The “MathScript Node” offers an intuitive means of combining graphical and textual code within

LabVIEW. The figure below shows the “MathScript Node” on the block diagram, represented by the

blue rectangle. Using “MathScript Nodes”, you can enter .m file script text directly or import it from a

text file.

You can define named inputs and outputs on the MathScript Node border to specify the data to

transfer between the graphical LabVIEW environment and the textual MathScript code.

You can associate .m file script variables with LabVIEW graphical programming, by wiring Node inputs

and outputs. Then you can transfer data between .m file scripts with your graphical LabVIEW

programming. The textual .m file scripts can now access features from traditional LabVIEW graphical

programming.

The MathScript Node is available from LabVIEW from the Functions Palette: Mathematics → Scripts

& Formulas

43 MathScript Node

Tutorial: LabVIEW MathScript

If you click Ctrl+H you get help about the MathScript Node:

Click “Detailed help” in order to get more information about the MathScript Node.

Use the NI Example Finder in order to find examples:

44 MathScript Node

Tutorial: LabVIEW MathScript

6.1 Transferring MathScript Nodes between

Computers

If a script in a MathScript Node calls a user-defined function, LabVIEW uses the default search path

list to link the function call to the specified .m file. After you configure the default search path list and

save the VI that contains the MathScript Node, you do not need to reconfigure the MathScript search

path list when you open the VI on a different computer because LabVIEW looks for the .m file in the

directory where the .m file was located when you last saved the VI. However, you must maintain the

same relative path between the VI and the .m file.

6.2 Examples

Example: Using the MathScript Node

Here is an example of how you use the MathScript Node. On the left border you connect input

variables to the script, on the right border you have output variables. Right-click on the border and

select “Add Input” or “Add Output”.

45 MathScript Node

Tutorial: LabVIEW MathScript

[End of Example]

Example: Calling a Windows DLL:

[End of Example]

Example: Using m-files in the MathScript Node:

Use the LabVIEW MathScript to create a m-file script (or you may use MATLAB to create the same

script):

46 MathScript Node

Tutorial: LabVIEW MathScript

Right-click on the border of the MathScript Node and select “Import”, and then select the m-file you

want to import into the Node.

47 MathScript Node

Tutorial: LabVIEW MathScript

Right-click on the right border and select “Add Output”. Then right-click on the output variable and

select “Create Indicator”.

Block Diagram:

The result is as follows (click the Run button):

If you, e.g., add the following command in the MathScript Node: plot(x), the following window

appears:

[End of Example]

48 MathScript Node

Tutorial: LabVIEW MathScript

6.3 Exercises

Use the MathScript Node and test the same examples you did in the previous chapter (Chapter 4 -

“Linear Algebra Examples”)

49

7 MATLAB Script

The MATLAB Script calls the MATLAB software to execute scripts. You must have a licensed copy of

the MATLAB software version 6.5 or later installed on your computer to use MATLAB script nodes

because the script nodes invoke the MATLAB software script server to execute scripts written in the

MATLAB language syntax. Because LabVIEW uses ActiveX technology to implement MATLAB script

nodes, they are available only on Windows.

50

Appendix A – MathScript

Functions for Control and

Simulation

Here are some descriptions for the most used MathScript functions used in this Lab Work.

Function Description Example

plot Generates a plot. plot(y) plots the columns of y against the

indexes of the columns.

>X = [0:0.01:1];

>Y = X.*X;

>plot(X, Y)

tf Creates system model in transfer function form. You also can

use this function to state-space models to transfer function

form.

>num=[1];

>den=[1, 1, 1];

>H = tf(num, den)

poles Returns the locations of the closed-loop poles of a system

model.

>num=[1]

>den=[1,1]

>H=tf(num,den)

>poles(H)

tfinfo Returns information about a transfer function system model. >[num, den, delay, Ts] =

tfinfo(SysInTF)

step Creates a step response plot of the system model. You also can

use this function to return the step response of the model

outputs. If the model is in state-space form, you also can use this

function to return the step response of the model states. This

function assumes the initial model states are zero. If you do not

specify an output, this function creates a plot.

>num=[1,1];

>den=[1,-1,3];

>H=tf(num,den);

>t=[0:0.01:10];

>step(H,t);

lsim Creates the linear simulation plot of a system model. This

function calculates the output of a system model when a set of

inputs excite the model, using discrete simulation. If you do not

specify an output, this function creates a plot.

>t = [0:0.1:10]

>u = sin(0.1*pi*t)'

>lsim(SysIn, u, t)

Sys_order1 Constructs the components of a first-order system model based

on a gain, time constant, and delay that you specify. You can use

this function to create either a state-space model or a transfer

function model, depending on the output parameters you

specify.

>K = 1;

>tau = 1;

>H = sys_order1(K, tau)

Sys_order2 Constructs the components of a second-order system model

based on a damping ratio and natural frequency you specify. You

can use this function to create either a state-space model or a

>dr = 0.5

>wn = 20

>[num, den] = sys_order2(wn, dr)

51 Error! Reference source not found.

Tutorial: LabVIEW MathScript

transfer function model, depending on the output parameters

you specify.

>SysTF = tf(num, den)

>[A, B, C, D] = sys_order2(wn, dr)

>SysSS = ss(A, B, C, D)

damp Returns the damping ratios and natural frequencies of the poles

of a system model.

>[dr, wn, p] = damp(SysIn)

pid Constructs a proportional-integral-derivative (PID) controller

model in either parallel, series, or academic form. Refer to the

LabVIEW Control Design User Manual for information about

these three forms.

>Kc = 0.5;

>Ti = 0.25;

>SysOutTF = pid(Kc, Ti,

'academic');

conv Computes the convolution of two vectors or matrices. >C1 = [1, 2, 3];

>C2 = [3, 4];

>C = conv(C1, C2)

series Connects two system models in series to produce a model

SysSer with input and output connections you specify

>Hseries = series(H1,H2)

feedback Connects two system models together to produce a closed-loop

model using negative or positive feedback connections

>SysClosed = feedback(SysIn_1,

SysIn_2)

ss Constructs a model in state-space form. You also can use this

function to convert transfer function models to state-space

form.

>A = eye(2)

>B = [0; 1]

>C = B'

>SysOutSS = ss(A, B, C)

ssinfo Returns information about a state-space system model. >A = [1, 1; -1, 2]

>B = [1, 2]'

>C = [2, 1]

>D = 0

>SysInSS = ss(A, B, C, D)

>[A, B, C, D, Ts] = ssinfo(SysInSS)

pade Incorporates time delays into a system model using the Pade

approximation method, which converts all residuals. You must

specify the delay using the set function. You also can use this

function to calculate coefficients of numerator and denominator

polynomial functions with a specified delay.

>[num, den] = pade(delay, order)

>[A, B, C, D] = pade(delay, order)

bode Creates the Bode magnitude and Bode phase plots of a system

model. You also can use this function to return the magnitude

and phase values of a model at frequencies you specify. If you

do not specify an output, this function creates a plot.

>num=[4];

>den=[2, 1];

>H = tf(num, den)

>bode(H)

bodemag Creates the Bode magnitude plot of a system model. If you do

not specify an output, this function creates a plot.

>[mag, wout] = bodemag(SysIn)

>[mag, wout] = bodemag(SysIn, [wmin

wmax])

>[mag, wout] = bodemag(SysIn,

wlist)

margin Calculates and/or plots the smallest gain and phase margins of a

single-input single-output (SISO) system model. The gain margin

indicates where the frequency response crosses at 0 decibels.

The phase margin indicates where the frequency response

crosses -180 degrees. Use the margins function to return all gain

and phase margins of a SISO model.

>num = [1]

>den = [1, 5, 6]

>H = tf(num, den)

margin(H)

52 Error! Reference source not found.

Tutorial: LabVIEW MathScript

margins Calculates all gain and phase margins of a single-input

single-output (SISO) system model. The gain margins indicate

where the frequency response crosses at 0 decibels. The phase

margins indicate where the frequency response crosses -180

degrees. Use the margin function to return only the smallest

gain and phase margins of a SISO model.

>[gmf, gm, pmf, pm] = margins(H)

For more details about these functions, type “help cdt” to get an overview of all the functions used

for Control Design and Simulation. For detailed help about one specific function, type “help

<function_name>”.

Plots functions: Here are some useful functions for creating plots: plot, figure, subplot, grid, axis,

title, xlabel, ylabel, semilogx – for more information about the plots function, type “help plots”.

Telemark University College

Faculty of Technology

Kjølnes Ring 56

N-3914 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.

Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Phone: +47 3557 5158

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

Room: B-237a

http://www.hit.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

