Hegskolen i Telemark

Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Tutorial

LabVIEW MathScript

HANS-PETTER HALVORSEN, 2011.02.11

. LabVIEW MathScript

File Edt Yew Operate Tools Window Help

Output Window

ans =

-0.95892

(23

Command Window

[E3

2.0

Variables | Seript | History |
@ =) | Ci\templLab¥IEW Datahsimple.m ‘
Function [1] = simpleda) B
r = sin(a)

=
Line: 3, Column: 11

Idl=

mFaculty of Technology, Postboks 203, Kjelnes ring 56, N-3901 Porsgrunn, Norway.

Tel: +47 3557 50 00 Fax: +47 35 57 54 0

Preface

This document explains the basic concepts of using LabVIEW MathScript.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

What is LabVIEW?

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and
development environment for a visual programming language from National Instruments. The
graphical language is named "G".

What is MATLAB?

MATLAB is a tool for technical computing, computation and visualization in an integrated
environment. MATLAB is an abbreviation for MATrix LABoratory, so it is well suited for matrix
manipulation and problem solving related to Linear Algebra.

MATLAB offers lots of additional Toolboxes for different areas such as Control Design, Image
Processing, Digital Signal Processing, etc.

What is MathScript?

MathScript is a high-level, text- based programming language. MathScript includes more than 800
built-in functions and the syntax is similar to MATLAB. You may also create custom-made m-file like
you do in MATLAB.

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW programming in
order to use MathScript. If you want to integrate MathScript functions (built-in or custom-made
m-files) as part of a LabVIEW application and combine graphical and textual programming, you can
work with the MathScript Node.

In addition to the MathScript built-in functions, different add-on modules and toolkits installs
additional functions. The LabVIEW Control Design and Simulation Module and LabVIEW Digital
Filter Design Toolkit install lots of additional functions.

You can more information about MathScript here: http://www.ni.com/labview/mathscript.htm

How do you start using MathScript?

You need to install LabVIEW and the LabVIEW MathScript RT Module. When necessary software is
installed, start MathScript by open LabVIEW:

http://home.hit.no/~hansha/
http://www.ni.com/labview/mathscript.htm

B! Getting Started E]l:lg]

Elle Operate Tools Help

rror
m La bVI EW Licensed for Professional wersion

New Latest from ni.com
“al, Blark v1 Mlews
), Empty Praject Technical Content
@ Real-Time Project Example Programs
3 More...
Training Resources
Online Support
Open

Discussion Farums
L M\, \8ir Heater\HIL Simulation.lvproj

[&) M. \Wocabularocabulary. heproj Lebiaig

KnowledgeBase
[l m:...\CodeSiope and Intercept.vi Request Support
[l M\, ASubVICodetLinear Scaling.vi Help

[l Ciitmpltest2.vi
sl M:\...\Slope and Intercept.vi

Getting Started with LabVIEW

Lab¥IEW Help

3 Browse...
List of All Nevs Features
Targets .
‘Muhwle Project vl [ao] '_-\ Find Examples

In the Getting Started window, select Tools -> MathScript Window...:

| Getting Started
File Operate BEEEN Help

Measurement & Autaomation Explorer, .,
oo Instrumentation 4

Real-Tim

0= Module [3
MNew IMAQ Yision » Latest from ni.com

Table of Contents

=Y - [ol T TP PO URPPPUPRO ii
TabIE OF CONTENES ...ttt ettt et sae e sttt e e bt e sb e sbeesaeesmteeabeenbeens iv
1 INtroduction tO LADVIEWooiiiiiiiiieeee ettt ettt s 1
1.1 DatafloW ProgramMINgcoccciiiieeiiiie ettt e e re e e e stre e e e e bbe e e e e areeesenteeeeenbaeeeenarenas 1
1.2 Graphical Programming..........coieeiiiiiie e e e eree e e e e bae e e e et e e e e eabae e e e nbe e e e e earaeas 1
0 T 21T T 1 T OO TP PP PRI 2
1.4 LabVIEW MathScript RT MOAUIEcvieiiiiiee ettt e 2

2 LabVIEW MathScript RT MOGUIEcoeeeiieeeceee ettt e et e e et e e s aaae e e eaaaeeeseanaeaeean 3
3 1Y VA T Y =Y N Yol oY 4
3.1 INEFOAUCTION ..ttt sttt et e bt e b e s bt e sae e eae e et e e beenbeesbeesanenas 4
3.2 [=1 T PRSP 6
33 10 0Y o] [T USP 6
3.4 USEfUl COMMANGS ...ttt ettt b e b e bt st e st e et e e sbeesbeesaeesanenas 9
(011 Ta T W ot T T g Y/ 1T T o U 9
User-Defined FUNCLIONS IN IMAtNSCIIPT.....ciii ittt ettt e e tre e e e eare e e e e areeeeeanes 10
Yol o) £ PNt 11
35 FIOW CONTIOL ..ttt et s e b e e s e s be e e snneesaneeesnneenn 13
35.1 [f-@1SE STATEMENT ...ttt st ettt e sbe e saeesane e 13
3.5.2 Switch and Case STateMENT......cccueiiiiieieeee e e 13
3.53 oY gl oo o JU USSRt 14
3.54 ALY V1T [Yo Yo SRR 14

3.6 o o) i o T = SRR 15

4 Linear Algebra EXamPIES.uiiiiee ittt e e e e e e e e et ee e e e e e e e s snnbar e e e e e e e eennnraaeeeeas 17

v Table of Contents
4.1 Y=ot o 3OO PPN 17
4.2 IVIAEIICES . ettt st e et e e s e e e st e e s s b e e s s e e e e s e e s e anre e e e e nreeas 18

4.2.1 TEANSPOSE .. e aaaaaaaaaenns 18
4.2.2 1T =0T o -1 PP UPP 19
4.2.3 LIS 1T = {01 =T PP 20
424 MatriXx MURPIICATION . ..cciiiie e e 20
4.2.5 MALFIX AAITION. c..eeeieee ettt e st e st nr e s e e saees 21
4.2.6 DetEIrMINANT . e e e s e e s e e e 21
4.2.7 INVEISE IMATFICES oottt ettt e s st e e et e s s e e s smreee e s enreeas 22
4.3 EIZENVAIUBS ...ttt e e e et e e e e e e e e b e e e e ee e e enabee e e e aabaeeeenraeas 23
4.4 SOIVING LINEAr EQUAtIONS....uiiiiiiiie ittt erttee ettt eree e e s see e e e e e s s bee e s e sabee e s e snreeeeenasenas 24
4.5 LU faCLOFIZAtION ...eeeiieeiiiesi ettt et sttt et e st e st e s bt e e sabeeebbeesabeesanaeesareean 25
4.6 The Singular Value Decomposition (SVD)......cccieeiiieiiiieeiieeeieeesieeesteeecteeesreesteeesare e e vneeeanas 26
A7 COMMEANGS...iiiiiriiiiiieieee ettt s sttt s st e s bt e st esae e s bt e bt e b e e s b e e sreesateereeneesneennne e 27

5 Control Design and SIMUIGLIONcoiiiiiiii i e e e e e s s ree e e e eanes 28

5.1 State-space models and Transfer fUNCtiIONScoccviiiiiiiiiiicc e 28
5.1.1 PID ettt b e bt st s he e e e e e reenre e reesaee e 29
5.1.2 StAtE-SPACE MOUEI ..o et e e et ae e e e b b e e e e anaaeeeas 30
5.1.3 TranSfer FUNCTION ..ottt 31
5.1.4 FIrst Order SYSTEMS ...viiiiiiiee ettt ettt e sree e e e stee e e et ee e e e ebre e e seabae e e sabaaeeenareeas 32
5.1.5 Y=ToleT Ve [0 e [T aR Vi AT o TR 33
5.1.6 Padé-apProXimationccuieiieieie ittt e e e e e e ae e e s ae e e e arreas 35

5.2 Frequency ReSPONSE ANAIYSIS......ciiiiiiii ettt et e e e ere e e e sbee e e e ebae e e e eabae e e enraeas 36
5.2.1 2 To Yo L DI = { - | o o [PPSR 36

B =R 2U=E] oo LY~ TR 40

6 YN Ny ol o1 ol o o [T PR 42

Tutorial: LabVIEW MathScript

vi Table of Contents

6.1 Transferring MathScript Nodes between COMPULErSccovcviiiiiiiieeeniiee e 44
6.2 [T T8 0] o] [PPSR 44
6.3 =T o] Y= PSPPSR 48
7 IMIATLAB SCIIPE curtieiitteitie ettt ettt ettt ettt ettt e sttt e bt e st e s bt e e s bt e sbee e s abeesabaeesabeesabeesneeesabeeennees 49
Appendix A — MathScript Functions for Control and Simulationcccceeieeiiiiiiiiiieecee e, 50

Tutorial: LabVIEW MathScript

1Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and
development environment for a visual programming language from National Instruments. The
graphical language is named "G". Originally released for the Apple Macintosh in 1986, LabVIEW is
commonly used for data acquisition, instrument control, and industrial automation on a variety of
platforms including Microsoft Windows, various flavors of UNIX, Linux, and Mac OS X. The latest
version of LabVIEW is version LabVIEW 2009, released in August 2009. Visit National Instruments at

WWW.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”. LabVIEW
offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow programming

The programming language used in LabVIEW, also referred to as G, is a dataflow programming
language. Execution is determined by the structure of a graphical block diagram (the LV-source code)
on which the programmer connects different function-nodes by drawing wires. These wires
propagate variables and any node can execute as soon as all its input data become available. Since
this might be the case for multiple nodes simultaneously, G is inherently capable of parallel
execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in
scheduler, which multiplexes multiple OS threads over the nodes ready for execution.

1.2 Graphical programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a
block diagram, a front panel, and a connector panel. The last is used to represent the VI in the block
diagrams of other, calling VlIs. Controls and indicators on the front panel allow an operator to input
data into or extract data from a running virtual instrument. However, the front panel can also serve
as a programmatic interface. Thus a virtual instrument can either be run as a program, with the front
panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel
defines the inputs and outputs for the given node through the connector pane. This implies each VI
can be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging and
dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW

http://www.ni.com/

2 Introduction to LabVIEW

programming environment, with the included examples and the documentation, makes it simple to
create small applications. This is a benefit on one side, but there is also a certain danger of
underestimating the expertise needed for good quality "G" programming. For complex algorithms or
large-scale code, it is important that the programmer possess an extensive knowledge of the special
LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW
development systems offer the possibility of building stand-alone applications. Furthermore, it is
possible to create distributed applications, which communicate by a client/server scheme, and are
therefore easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for accessing
instrumentation hardware. Drivers and abstraction layers for many different types of instruments
and buses are included or are available for inclusion. These present themselves as graphical nodes.
The abstraction layers offer standard software interfaces to communicate with hardware devices.
The provided driver interfaces save program development time. The sales pitch of National
Instruments is, therefore, that even people with limited coding experience can write programs and
deploy test solutions in a reduced time frame when compared to more conventional or competing
systems. A new hardware driver topology (DAQmxBase), which consists mainly of G-coded
components with only a few register calls through NI Measurement Hardware DDK (Driver
Development Kit) functions, provides platform independent hardware access to numerous data
acquisition and instrumentation devices. The DAQmxBase driver is available for LabVIEW on
Windows, Mac OS X and Linux platforms.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

1.4 LabVIEW MathScript RT Module

The LabVIEW MathScript RT Module is an add-on module to LabVIEW. With LabVIEW MathScript RT
Module you can:

e Deploy your custom .m files to NI real-time hardware

e Reuse many of your scripts created with The MathWorks, Inc. MATLAB® software and others
o Develop your .m files with an interactive command-line interface

e Embed your scripts into your LabVIEW applications using the MathScript Node

Tutorial: LabVIEW MathScript

http://home.hit.no/~hansha/

2LabVIEW MathScript RT
Module

You can work with LabVIEW MathScript through either of two interfaces: the “LabVIEW MathScript
Interactive Window” or the “MathScript Node”.

You can work with LabVIEW MathScript RT Module through both interactive and programmatic
interfaces. For an interactive interface in which you can load, save, design, and execute your .m file
scripts, you can work with the “MathScript Interactive Window”. To deploy your .m file scripts as part
of a LabVIEW application and combine graphical and textual programming, you can work with the
“MathScript Node”.

The LabVIEW MathScript RT Module complements traditional LabVIEW graphical programming for
such tasks as algorithm development, signal processing, and analysis. The LabVIEW MathScript RT
Module speeds up these and other tasks by giving users a single environment in which they can
choose the most effective syntax, whether textual, graphical, or a combination of the two. In
addition, you can exploit the best of LabVIEW and thousands of publicly available .m file scripts from
the web, textbooks, or your own existing m-script applications. LabVIEW MathScript RT Module is
able to process your files created using the current MathScript syntax and, for backwards
compatibility, files created using legacy MathScript syntaxes. LabVIEW MathScript RT Module can
also process certain of your files utilizing other text-based syntaxes, such as files you created using
MATLAB software. Because the MathScript RT engine is used to process scripts contained in a
MathScript Windows or MathScript Node, and because the MathScript RT engine does not support
all syntaxes, not all existing text-based scripts are supported.

LabVIEW MathScript RT Module supports most of the functionality available in MATLAB, the syntax is
also similar.

For more details, see http://zone.ni.com/devzone/cda/tut/p/id/3257

http://zone.ni.com/devzone/cda/tut/p/id/3257

3LabVIEW MathScript

3.1 Introduction

Requires: MathScript RT Module

How do you start using MathScript? You need to install LabVIEW and the LabVIEW MathScript RT
Module. When necessary software is installed, start MathScript by open LabVIEW:

File Cpetate Tools Help

ﬂ La bVI EW Licensed for Professional Yersion

New Latest from ni.com
%, Blark V1 News
E; Empty Project Technical Content
E Reeal-Time Project Example Programs
3 More...
Training Resources
Online Support
Open

Discussion Forums
@. 4, \ir Heater\HIL Simulation,vproj

@. 4, \vocabularyivocsbulary vprod Code Sharing

KnowledgeBase

|;ﬂ M\, \Code\Slope and Intercept.vi Request Suppart
|;ﬂ 4.\ SubiCodelLinear Scaling i Help
Bl Citmpltestzi Getting Started with LabYIEW
|;ﬂ i\, \Slope and Inkercept. vi
LabVYIEW Help
3 Browse..,
List of All New Features
Targets
Mokile Project v
‘ t | [=0] ';\ Find Examples. ..

In the Getting Started window, select Tools -> MathScript Window...

B! Getting Started
Fil=: Cperate BIEEEN Help

Measurement & Aukamation Explarer, .
wrmieend Insktrumenkakion 3

l Real-Tim
SRR

DS Module 3
New IMAD Yision »

Latest from ni.com

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file script
commands and see immediate results, variables and commands history. The window includes a

4

5 LabVIEW MathScript

command-line interface where you can enter commands one-by-one for quick calculations, script
debugging or learning. Alternatively, you can enter and execute groups of commands through a script
editor window.

As you work, a variable display updates to show the graphical / textual results and a history window
tracks your commands. The history view facilitates algorithm development by allowing you to use the
clipboard to reuse your previously executed commands.

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also can enter
batch scripts in a simple text editor window, loaded from a text file, or imported from a separate text
editor. The “LabVIEW MathScript Window” provides immediate feedback in a variety of forms, such
as graphs and text.

]
ol

T3 L4k dhriiceiph =

[re 8 dew (peds Dub S b

AR ST Waabied WP
Per balp; eniwt “balp classes -

A1 il
Textual
| Output -
MathScript syl
Wiﬂd ow Command

Histary

Command i
*‘ -

L | ol |

Example:

Tutorial: LabVIEW MathScript

LabVIEW MathScript

P LabVIEW MathScript

File Edit Wiew Operate Tools Window Help

Qukput Window

ans =
-0.95892
Frh
A=
1 Z
3 4
Fring (&)
ans =
-2 1
.5 =5
>>det(A)
ans =
-2

[£3

l

Command 'Window

™

| Variables | Seript | Histary |

ECE)]

CiikempiLabyIEW Datalsimple.m

function [r] = simplefa)

r = sinia)

o

(9.0 | |

Line: 3, Column: 11

Idle

[End of Example]

3.2 Help

You may also type help in your command window

>>help

Or more specific, e.g.,

>>help plot

3.3 Examples

| advise you to test all the examples in this text in LabVIEW MathScript in order to get familiar with
the program and its syntax. All examples in the text are outlined in a frame like this:

>>

Tutorial: LabVIEW MathScript

7 LabVIEW MathScript

This is commands you should write in the Command Window.

You type all your commands in the Command Window. | will use the symbol “>>” to illustrate that
the commands should be written in the Command Window.

Example: Matrices

Defining the following matrix

0 3

The syntax is as follows:

>> A = [1 2;0 3]
Or
> A = [1,2;0,3]

If you, for an example, want to find the answer to

a+ b,wherea=4,b=3

>>a=4
>>pb=3
>>a+b

MathScript then responds:

ans =
7

MathScript provides a simple way to define simple arrays using the syntax:
“init:increment:terminator”. For instance:

>> array = 1:2:9
array =
13579

The code defines a variable named array (or assigns a new value to an existing variable with the
name array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1
(the init value), increments with each step from the previous value by 2 (the increment value), and
stops once it reaches (or to avoid exceeding) 9 (the terminator value).

The increment value can actually be left out of this syntax (along with one of the colons), to use a
default value of 1.

>> ari = 1:5
ari =

Tutorial: LabVIEW MathScript

8 LabVIEW MathScript

12345

The code assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default
value of 1 is used as the incrementer.

Note that the indexing is one-based, which is the usual convention for matrices in mathematics. This
is atypical for programming languages, whose arrays more often start with zero.

Matrices can be defined by separating the elements of a row with blank space or comma and using a
semicolon to terminate each row. The list of elements should be surrounded by square brackets: [].
Parentheses: () are used to access elements and subarrays (they are also used to denote a function
argument list).

>> A = [l6 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =
16 3 2 13
510 11 8
9 6 7 12
4 15 14 1
>> A(2,3)
ans =
11

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For
example, a submatrix taken from rows 2 through 4 and columns 3 through 4 can be written as:

>> A(2:4,3:4)
ans =

11 8

7 12

14 1

A square identity matrix of size n can be generated using the function eye, and matrices of any size
with zeros or ones can be generated with the functions zeros and ones, respectively.

>> eye (3)
ans =

100

010

001
>> zeros (2, 3)
ans =

000

000
>> ones (2, 3)
ans =

111

111

Tutorial: LabVIEW MathScript

9 LabVIEW MathScript

3.4 Useful commands

Here are some useful commands:

Command Description
eye (x), eye(x,Vy) Identity matrix of order x
ones (x), ones(x,y) A matrix with only ones
zeros (x), zeros(x,y) A matrix with only zeros
diag([x y z]) Diagonal matrix
size (A) Dimension of matrix A
A’ Inverse of matrix A

Calling functions In MathScript

MathScript includes more than 800 built-in functions that you can use, e.g., in a previous task you
used the plot function.

Example: Built-in Functions

Given the vector:

>>x=[1 2 5 6 8 9 3]

- Find the mean value of the vector x.

- Find the minimum value of the vector x.
- Find the maximum value of the vector x.

The MathScript Code is:

x=[1 2 5 6 8 9 3]
mean (x)
min (x)
max (x)

[End of Example]

Tutorial: LabVIEW MathScript

10 LabVIEW MathScript

User-Defined Functions In MathScript

MathScript includes more than 800 built-in functions that you can use but sometimes you need to
create your own functions.

To define your own function in MathScript, use the following syntax:

function outputs = function name (inputs)

Q

% documentation

Here is the procedure for creating a a user-defined function in MathScript:

B! LabVIEW MathScript

Save your function as a m file
IHE Edit Wiew Operate Tools Window Help :

Mew YT CheleN \Wrm* |
Mew, .. 3

Cpen, . Cri+o .6 & |[% CritmpiMathscriptiadd.m

Close Chrl+w @ [%(”) |
unction kokal = add(x,y -

Close 4] b this Funckion add 2 numbers @ Create your function in
total = x4y} L

Save Chr+s the Script window

Save As.. .

Open MathScript 4)| Add Search Folder

Mew Script Editor Properties for your Code

Mew Project

Cpen Project... 3

Recent Projects Search pathis) For e EI]I']

Clmelpartiast P
Recent Files » \ .

Exit

Add your folder where your
code is located here

Working diectory
oottt
The frt drectory in the Search pathis) fue . Fles ot spedfis the Warking deecory.

NOTE:

Command Window

add(3,5)| 5 o
[EEEERTY | = | T

Test your function in the
Command window

£

Line: 1, Column: 18

.05 | 1de

Tutorial: LabVIEW MathScript

11

LabVIEW MathScript

P/ Lab¥IEW MathScript

Fie Edit Yiew Operate Tools Window Help
Qubput Window Varisbles | Sfipt | History |
-
9 qA @ | miworkiLabiLab WorkiMathscript Lab\Solutions\Code! |
function av = cale_averagex,y) N
— uThis function calculates the average of 2 umbers b |
’ av=(eky)f2;
FrE=2
%=
2
Smy=4
¥-
4
>>z=calc_averageix,vi
z =
3
v
«Command Window
z=calo_average (x,y) ~
¥ a
B e ||| [tine: L Coumn: 32

Scripts

A script is a sequence of MathScript commands that you want to perform to accomplish a task. When
you have created the script you may save it as a m-file for later use.

& LabVIEW MathScript

[- [T]ix]
File Edit Yiew Operate Tools Window Help
Output Window Wariables | SCrPE | Histor
| 3
3 b | @ B M ork| Tutoriske|sbYIEW|LabYIEW Mathcript|CadelExampleeiathscript, |
t=[0:0.1:10; ~
>>mean (x) ZEE&SS«?;
ans =
4.8571
Run the Script
FHOE(R) Type commands in your
ans = script here
9
P Plot 1 -]
Fle ITtems Tocls Help
Graph
1
0,5-] 4
-
0- -
0,5 [
Ao T T
0 1 z 34 5 6 7 & 9 10
v o)
S T Line: 4, Column: 1

You may also have multiple Script Windows open at the same time by selecting “New Script Editor”

in the File menu:

Tutorial: LabVIEW MathScript

12

LabVIEW MathScript

B Lab¥IEW MathScript

M Edit Yiew Cperate Tools Window

Help

Rew VI Crl+
e,

Jpen... Crl+0
Close Chrl+
Close all

Save Chrl+s
Save fs..,

ipt Editor

MNew Project
Open Project. .,

LabYIEW MathScript Properties Chrl+1

Recent Projects 3
Recent Files »

Exit

075+ 1765831
0.5 - 1.65831

0.5 + 1.65331
L65831

=}

@
|

(o

‘ Variables | Script | History |

Command Window

|

EH Mi\WrorkiLablLab WorkiMathScript LablSolutions)Code! Task 7y |

8|

9.0F3

Line: 14, Column: 1

This gives:

File Edit

Wariables | STt | History ‘

EE1EY)

@ EH M:iWWorkiLabiLab WorkiMathScript Lab! Solutions\Code\ Task 74

]

Line: 14, Calumn: 1

o

Idle J

Tutorial: LabVIEW MathScript

13 LabVIEW MathScript

3.5 Flow Control

This chapter explains the basic concepts of flow control in MathScript.
The topics are as follows:

e [f-else statement

e Switch and case statement
e Forloop

e While loop

3.5.1 If-else Statement

The if statement evaluates a logical expression and executes a group of statements when the
expression is true. The optional elseif and else keywords provide for the execution of alternate
groups of statements. An end keyword, which matches the if, terminates the last group of
statements. The groups of statements are delineated by the four keywords—no braces or brackets
are involved.

Example: If-Else Statement

Test the following code:

n=5
if n > 2

M = eye(n)
elseif n < 2

M = zeros (n)
else

M = ones (n)
end

[End of Example]

3.5.2 Switch and Case Statement

The switch statement executes groups of statements based on the value of a variable or expression.
The keywords case and otherwise delineate the groups. Only the first matching case is executed.
There must always be an end to match the switch.

Example: Switch and Case Statement

Test the following code:

n=2
switch (n)

Tutorial: LabVIEW MathScript

14 LabVIEW MathScript

case 1

M = eye(n)
case 2

M = zeros(n)
case 3

M = ones (n)

end

[End of Example]

3.5.3 For loop

The for loop repeats a group of statements a fixed, predetermined number of times. A matching end
delineates the statements.

Example: For Loop

Test the following code:

m=5
for n = 1:m
r(n) = rank(magic(n));
end
r

[End of Example]

3.54 While loop

The while loop repeats a group of statements an indefinite number of times under control of a logical
condition. A matching end delineates the statements.

Example: While Loop

Test the following code:

m=5;

while m > 1
m=m - 1;
zeros (m)

end

[End of Example]

Tutorial: LabVIEW MathScript

15 LabVIEW MathScript

3.6 Plotting

This chapter explains the basic concepts of creating plots in MathScript.
Topics:

e Basic Plot commands

Example: Plotting

Function plot can be used to produce a graph from two vectors x and y. The code:

x = 0:p1/100:2*pi;
y = sin(x);
plot (x,vy)

produces the following figure of the sine function:

(EE)

L&

nar

-2

-0

L8 |

[End of Example]

Example: Plotting

Three-dimensional graphics can be produced using the functions surf, plot3 or mesh.

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10) ;
f = sinc(sqrt ((X/pi)."2+(Y/pi)."2));

mesh (X,Y, f);

axis([-10 10 -10 10 -0.3 11])

Tutorial: LabVIEW MathScript

16 LabVIEW MathScript

xlabel (' {\bfx}")

ylabel ('{\bfy}")
zlabel (' {\bfsinc} ({\bfR})")
hidden off

This code produces the following 3D plot:

[End of Example]

Tutorial: LabVIEW MathScript

4Linear Algebra Examples

Requires: MathScript RT Module

Linear algebra is a branch of mathematics concerned with the study of matrices, vectors, vector
spaces (also called linear spaces), linear maps (also called linear transformations), and systems of
linear equations.

MathScript are well suited for Linear Algebra.

4.1 Vectors

Given a vector x
x=|.]€R"

Example: Vectors

Given the following vector

-}

xT=[x1 Xy e xn]E R1xn

>> x!'
ans =
1 2 3

[End of Example]

The Length of vector x:

17

18

Linear Algebra Examples

lx|| = VxTx = \/xlz + x5+ + X2

Orthogonality:

xTy =0
4.2 Matrices
Given a matrix A:
a1 A1m
A= : € R™M
an1 anm
Example: Matrices
Given the following matrix:
[0 1
a=5 5
>> A=[0 1;-2 -3]
A =
0 1
=2 =3
[End of Example]
4.2.1 Transpose
The Transpose of matrix A:
a1 - 4m
AT:[. .] € Rmxn
Aim " Anm

Example: Transpose

Given the matrix:

T —
AT:[_OZ —13] =[(1) —g

Tutorial: LabVIEW MathScript

19

Linear Algebra Examples

1 =3

[End of Example]

4.2.2 Diagonal

The Diagonal elements of matrix A is the vector

a1
a .
diag(A) = | :*| € Rp=minCom)
pp
Example: Diagonal
Find the diagonal elements of matrix A:
>> diag(A)
ans =
0
=3
[End of Example]
The Diagonal matrix A is given by:
A0 0
A — (.) 2'.2 9 (= Rnxn
0 o An
Given the Identity matrix /:
1 0 0
[= 0 1 0 e pnam
0 0 1

Example: Identity Matrix

Get the 3x3 Identity matrix:

>> eye (3)

ans =
1 0 0
0 1 0
0 0 1

Tutorial: LabVIEW MathScript

20

Linear Algebra Examples

[End of Example]

4.2.3 Triangular

Lower Triangular matrix L:

Upper Triangular matrix U:

b

4.2.4 Matrix Multiplication

Given the matrices 4 € R™™ and B € R™P?, then

where

Example: Matrix Multiplication

C = AB € R™P
n

Cjk = Z a1 by
=1

Matrix multiplication:

>> A=[0 1;-2 -3]

A =
0 1
-2 =3
>> B=[1 0;3 -2]
B =
1 0
3 =2
>> A*B
ans =
3 =2
=11 6

[End of Example]

Note!

Tutorial: LabVIEW MathScript

21

Linear Algebra Examples

AB # BA
A(BC) = (AB)C
(A+ B)C = AC + BC

C(A+B)=CA+CB

4.2.5 Matrix Addition

Given the matrices 4 € R™™ and B € R™™, then

C=A+Be€ R™™

Example: Matrix Addition

Matrix addition:

>> A=[0 1;-2 -3]
>> B=[1 0;3 -2]

>> A+B

ans =
1 1
1 =9

[End of Example]

4.2.6 Determinant

Given a matrix A € R™", then the Determinant is given:

det(4) = |A|
Given a 2x2 matrix

ay; Qg2
— [] € R2x2
a1 Q2

Then

det(A) = |A| = ay1a;2 — a0y,

Tutorial: LabVIEW MathScript

22

Linear Algebra Examples

Example: Determinant

Find the determinant:

A =
0 1
-2 =3
>> det (A)
ans =
2
Notice that
and

[End of Example]

Example: Determinant

det(AB) = det(4) det(B)

det(4T) = det (A)

Determinants:

>> det (A*B)
ans =

-4
>> det (A) *det (B)
ans =

-4
>> det (A'")
ans =

2
>> det (A)
ans =

2

[End of Example]

4.2.7 Inverse Matrices

The inverse of a quadratic matrix A € R™" is defined by:

A—l

Tutorial: LabVIEW MathScript

23

Linear Algebra Examples

For a 2x2 matrix we have:

The inverse A1 is given by

Example: Inverse Matrices

-1

AATl=A4"1A=1

ai1 Qiz
a=| | e rR22
a1 Az

_ 1 Gz —A12
det (A)l—Az21 Q11

] € R2x2

Inverse matrix:

A =
0 1
-2 -3
>> inv (A)
ans =
-1.5000 -0.5000
1.0000 0

[End of Example]

Notice that:

-> Prove this in MathScript

4.3 Eigenvalues

AATY=A"1A=1

Given A € R™", then the Eigenvalues is defined as:

Example: Eigenvalues

det(Al —A)=0

Find the Eigenvalues:

A =

0 1

-2 =3
>> eig(A)
ans =

=1

=2

Tutorial: LabVIEW MathScript

24 Linear Algebra Examples

[End of Example]

4.4 Solving Linear Equations

Given the linear equation

Ax=b
with the solution:
x=A"1b
(Assuming that the inverse of A exists)
Example: Solving Linear Equations
Solving the following equation:
The equations
X1+ 2x, =5
3%y +4x, =6
may be written
Ax=b

5 k=[]

where

The solution is:

A =
1 2
3 4
>> b=[5;6]
b =
5
6

Tutorial: LabVIEW MathScript

25 Linear Algebra Examples

X:
-4.0000
4.5000

In MathScript you could also write “x=A\b”, which should give the same answer. This syntax can also
be used when the inverse of A don’t exists.

[End of Example]

Example: Solving Linear Equations

Illegal operation:

>> A=[1 2;3 4;7 8]
>> x=inv (A) *b

??? Error using ==> inv
Matrix must be square.
>> x=A\b
x =

-3.5000

4.1786

[End of Example]

4.5 LU factorization

LU factorization of A € R™™ s given by

where

L is a lower triangular matrix

U is a upper triangular matrix

The MathScript syntaxis [L, U]=1u (A)

Example: LU Factorization

Find L and U:

>> A=[1 2;3 4]

>> [L,U]l=1lu(A)

L =
0.3333 1.0000
1.0000 0

3.0000 4.0000

Tutorial: LabVIEW MathScript

26

Linear Algebra Examples

0 0.6667

[End of Example]

Or sometimes LU factorization of A € R™™ s given by
A=LU=LDU

where

D is a diagonal matrix

The MathScript syntaxis [L, U, P]=1u (A7)

Example: LU Factorization

Find L, U and P:

>> A=[1 2;3 4]

A =
1 2
3 4
>> [L,U,P]=1u(A)
=
1.0000 0
0.3333 1.0000
U =
3.0000 4.0000
0 0.6667
P =
0 1
1 0

[End of Example]

4.6 The Singular Value Decomposition

(SVD)

The Singular value Decomposition (SVD) of the matrix 4 € R™™ s given by

A=UsSyT
where
U is a orthogonal matrix

Vis a orthogonal matrix

Tutorial: LabVIEW MathScript

27

Linear Algebra Examples

S is a diagonal singular matrix

Example: SVD Decomposition

Find S, Vand D:

>> A=[1 2;3 4];
>> [U,S,V] = svd(A)

U =
-0.4046 -0.9145
-0.9145 0.4046

S =
5.4650 0
0 0.3660

VvV =
-0.5760 0.8174
-0.8174 -0.5760

[End of Example]

4.7 Commands

Command

Description

(L, U]=1u(A)
[L,U,P]=1lu(a)

LU Factorization

[U,S,V] = svd(A)

Singular Value Decomposition (SVD)

Tutorial: LabVIEW MathScript

5Control Design and
Simulation

Using LabVIEW MathScript for Control Design purposes you need to install the “Control Design and
Simulation Module” in addition to the “MathScript RT Module” itself.

Use the Control Design MathScript RT Module functions to design, analyze, and simulate linear
controller models using a text-based language. The following is a list of Control Design MathScript RT
Module classes of functions and commands that LabVIEW MathScript supports.

Getting help about MathScript functions regarding the Control Design Toolkit (CDT), type “help cdt”
in the Command Window in the MathScript environment.

The following function classes exist:

Class Description
cdops Arithmetic operator functions

cdplots ¥ plane functions

cd=aolvers |Equation solver functions

connect |Model interconnection functions

construct | Model construction functions

convert [Model conversion functions

dvnchar |[Dvwnamic characteristics functions

frarsp Frequency response analysis functions
info Model information functions

reduce Model reduction functions

zzanalz |State-zpace analysis functions

zzdezign |State-feedback design functions

timereszp [Time response analysis functions

We will go through some of the classes and function in detail below:

5.1 State-space models and Transfer
functions

28

29 Control Design and Simulation

MathScript offers lots of functions for defining and manipulate state-space models and transfer
functions.

Class: contruct

Description:

Use functions in the construct class to construct linear time-invariant system models and to convert
between model forms.

Below we see the different functions available in the construct class:

Function |Description

drandss Generates a random discrete state-space system model

drandtf Generates a discrete random =ystem model in transfer function form

drandzpk |Generates a discrete random system model in zero-pole-gain (ZPK) form

pid Constructs a proportional-integral-derivative (PID) controller model

randss Generates a continuous random state-space system model

randtf Generates a continuous random system model in transfer function form
randzpk Generates a continuous random system model in zero-pole-gain (ZPK) form

Creates a system madel in, or converts a madel to, state-space form

i
5]

vs filter |Constructs a digital filter in transfer function form

i1
<
i

i1
"
{
(=
=N
(g
+

1 | Constructs the components of a first-order system model

sys grder2 | Constructs the components of a second-order system model
tf Creates a system maodel in, or converts a maodel to, transfer function form
zplk Constructs a system maodel in, or converts a model to, zero-pole-gain form

Below we will give some examples of how to use the most import functions in this class.

5.1.1 PID

Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control algorithm
used in industry.

In PID control, you must specify a process variable and a setpoint. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate, and the setpoint is the
desired value for the parameter you are controlling.

A PID controller determines a controller output value, such as the heater power or valve position.
The controller applies the controller output value to the system, which in turn drives the process
variable toward the setpoint value.

Then the PID controller calculates the controller action, u(t):

1t de
u(t) = K, e+FiJ;) edt+Tda

Where

Tutorial: LabVIEW MathScript

30 Control Design and Simulation

K. Controller gain
T; Integral time
T4 Derivative time
And e istheerror
e=SP—-PV
SP — Setpoint

PV — Process Variable

Function: pid

Description:

Constructs a proportional-integral-derivative (PID) controller model in either parallel, series, or
academic form.

Examples:

Kc = 0.5;
Ti = 0.25;
SysOutTF = pid(Kc, Ti, 'academic');

[End of Example]

5.1.2 State-space model

A state-space model is just a structured form or representation of the differential equations for a
system.

A linear State-space model:
x = Ax + Bu
y=Cx+Du

where x is the state vector and u is the input vector. A is called the system-matrix, and is square in all
cases.

Example:

Tutorial: LabVIEW MathScript

31 Control Design and Simulation

The differential equations:
561 - _2x1 + 6u
5C2 = 2x1

May be written on state-space form:
o] =3 o]+ (o)

Function: ss

Description:

This function constructs a continuous or discrete linear system model in state-space form. You also
can use this function to convert transfer function and zero-pole-gain models to state-space form.

Examples:

% Creates a state-space model
A eye (2)
B = [0; 1]
@
S

= B'
ysOutSS = ss (A, B, C)

o

Converts a zero-pole-gain model to state-space form
=1
[1, -11
=1
SysIn = zpk(z, p, k)
SysOutSS = ss(SysIn)

~ 0 N

[End of Example]

5.1.3 Transfer function

The transfer function of a linear system is defined as the ratio of the Laplace transform of the output
variable to the Laplace transform of the input variable.

y(s)

H(S) =——=

&) 20s)
Function tf
Description:

This function creates a continuous or discrete linear system model in transfer function form. You also
can use this function to convert zero-pole-gain and state-space models to transfer function form.

Tutorial: LabVIEW MathScript

32 Control Design and Simulation

Examples:

>>s = tf('s'")

This specifies that you want to create the continuous transfer function s / 1. After you enter this
command, you can use LabVIEW MathScript operands on this transfer function to define a
zero-pole-gain or transfer function model.

SysOutZPK = 4*(s + 2) / (s + 1)

This example constructs a zero-pole-gain model with a gain of 4, a zero at -2, and a pole at -1.

SysOutTF = (3*(s*s*s) + 2) / (4*(s*s*s*s) + 8)

This example constructs the transfer function model 3s*3 + 2 / 4s74 + 8.

[End of Example]

5.1.4 First Order Systems

The following transfer function defines a first order system:

H(s) =

Ts+1

Where
K is the gain
T isthe Time constant

Function sys_orderl

Description:

This function constructs the components of a first-order system model based on a gain, time
constant, and delay that you specify. You can use this function to create either a state-space model
or a transfer function model, depending on the output parameters you specify.

Inputs:
K Specifies the gain matrix. K is a real matrix.
tau Specifies the time constant, in seconds, which is the time required for the model output to reach

63% of its final value. The default value is 0.

Tutorial: LabVIEW MathScript

33 Control Design and Simulation

delay Specifies the response delay of the model, in seconds. The default value is 0.

Examples:

K= 0.5;
tau = 1.5;

SysOutTF sys_orderl (K, tau);

[End of Example]

5.1.5 Second Order Systems

A standard second order transfer function model may be written like this:

y(s) Kwy? K

u(s) 52+ 2¢wys + wy? - (i
Wo

H(s) =

)2 +20-+1
Wo

Where

K is the gain

{(zetais the relative damping factor

wplrad/s] is the undamped resonance frequency.

Function sys_order2

Description:

This function constructs the components of a second-order system model based on a damping ratio
and natural frequency you specify. You can use this function to create either a state-space model or a
transfer function model, depending on the output parameters you specify.

Example:

Examples of how to use the sys_order2 function:

dr = 0.5
wn = 20
[num, den] = sys order2(wn, dr)

SysTF = tf (num, den)
[A, B, C, D] = sys order2(wn, dr)
SysSS = ss(A, B, C, D)

[End of Example]

Class: connect

Tutorial: LabVIEW MathScript

34 Control Design and Simulation

Description:

Use members of the connect class to connect systems models together in various configurations.

Below we see the different functions available in the connect class:

Function | Description

append Appends system models together

diag Caonstructs a system madel whose diagonal contains copies of another model

feedback |Connects two system models in a closed-loop configuration

hconcat |Horizontally concatenates two or more system models.

parallel Connects two system models together in a parallel configuration

Erie

Connects two system models together in a serial configuration

L
4]

wvooncat [Wertically concatenates two or more system models

Function series

Description:

This function connects two system models in series to produce a model SysSer with input and output
connections you specify. The input models must be either continuous models or discrete models with
identical sampling times.

Example:

Here is an example of how to use the series function.

SysIn 1 tf£([1, 11, [1 -1, 31)
sysIn 2 = zpk([1], [1, -1], 1)
SysSer = series(SysIn 1, SysIn 2)

[End of Example]

Class: convert

Description:

Use members of the convert class to convert a continuous system model to a discrete model, convert
a discrete model to a continuous model, and resample a discrete model. You also can use members
of this class to incorporate delays into a system model.

Below we see the different functions available in the convert class:

Tutorial: LabVIEW MathScript

35 Control Design and Simulation

Function Description

c to d Converts a continuous system model to a discrete model
dto ¢ Canverts a discrete system model to a cantinuous one

d to d Fezamples a discrete system model

delav to = Incorpaorates delays into a discrete system maodel

distributedelay [Minimizes transport delay in a system model

pade Incarpaorates delays into a cantinuous system model by using Pade approximation
polvcoef Specifies whether transfer function coefficients are in ascending or descending direction
=z to Es Applies a state transformation to a system model

5.1.6 Padé-approximation

The Transfer function of a time-delay is:
H(s)=e™™

In some situations it is necessary to substitute e~ with an approximation, e.g., the
Padé-approximation:

1—kys +kys? + - L kys™
T 14 kiS4 kys? 4+ o+ kST

—Ts

Function: pade

Description:

This function incorporates time delays into a system model using the Pade approximation method,
which converts all residuals. You must specify the delay using the set function. You also can use this
function to calculate coefficients of numerator and denominator polynomial functions with a
specified delay.

Example:

Examples of how to use the pade function:

SysCon = zpk(l, 3.2, 6)
SysCon = set (SysCon, 'inputdelay', 6, 'outputdelay', 1.1)

SysDel = pade (SysCon, 2)

delay = 1.2

order = 3

[num, den] = pade(delay, order)

[End of Example]

Tutorial: LabVIEW MathScript

36 Control Design and Simulation

5.2 Frequency Response Analysis

The frequency response of a system is a frequency dependent function which expresses how a
sinusoidal signal of a given frequency on the system input is transferred through the system. Each
frequency component is a sinusoidal signal having a certain amplitude and a certain frequency.

The frequency response is an important tool for analysis and design of signal filters and for analysis
and design of control systems.

The frequency response can found experimentally or from a transfer function model.

The frequency response of a system is defined as the steady-state response of the system to a
sinusoidal input signal. When the system is in steady-state it differs from the input signal only in
amplitude (A4) and phase angle (w).

If we have the input signal:
u(t) = U sinwt
The steady-state output signal will be:
y(t) = UA sin (wt + ¢)

Aand ¢ is a function of the frequency w so we may write A = A(w),p = Pp(w)

For a transfer function

H(S) = %
We have:
[4C) = 1G]]
[$(@) = 2HGw)]

Where H(jw) is the frequency response of the system, i.e., we may find the frequency response by
setting s = jw in the transfer function.

5.2.1 Bode Diagram

Bode diagrams are useful in frequency response analysis. The Bode diagram consists of 2 diagrams,
the Bode magnitude diagram, A(w) and the Bode phase diagram, ¢(w).

Tutorial: LabVIEW MathScript

37 Control Design and Simulation

The A(w)-axis is in decibel (dB)
Where the decibel value of x is calculated as: x[dB] = 20log,,x
The ¢(w)-axis is in degrees (not radians)

Function: bode

Description:

This function creates the Bode magnitude and Bode phase plots of a system model. You also can use
this function to return the magnitude and phase values of a model at frequencies you specify. If you
do not specify an output, this function creates a plot.

Examples:

We have the following transfer function

_y(s) 1
H) =0 T 541

We want to plot the Bode diagram for this transfer function:

> Plot 1

File Items Tools Help
Bode Flats
Magnitude
a
- 1 D -
30—
30—
40—
50—
60—
=70 1 1 1 1 1 1
0,001 0,01 0,1 1 10 100 1E+3
o
o
=
o
& Phase
T
a
30—
40—
60—
-a0-
-100-, 1 1 1 1 1 1
0,001 0,01 0,1 1 10 100 1E+3
Frequency {radjs)

In MathScript we could write:

num=[1];
den=[1,11];
Hl=tf (num, den)
bode (H1)

[End of Example]

Tutorial: LabVIEW MathScript

38 Control Design and Simulation

Function: margin

Description:

This function calculates and/or plots the smallest gain and phase margins of a single-input
single-output (SISO) system model.

The gain margin indicates where the frequency response crosses at 0 decibels (“crossover
frequency”, w,).

|H(Gwe)l
w, is also the bandwidth of the system

The phase margin indicates where the frequency response crosses -180 degrees (“crossover
frequency”, w1go)-

£H (jwi3g0)

Examples:

The following example illustrates the use of the margin function.

num = [1]
den = [1, 5, 6]
H = tf (num, den)
margin (H)

[End of Example]

Example:

Given the following system:

1

S =6+n2

We want to plot the Bode diagram and find the crossover-frequencies for the system using
MathScript.

We use the following functions: tf, bode, margins and margin.

e gmfis the gain margin frequencies, in radians/second. A gain margin frequency indicates
where the model phase crosses -180 degrees.
e gm Returns the gain margins of the system.

Tutorial: LabVIEW MathScript

39

Control Design and Simulation

o pmf Returns the phase margin frequencies, in radians/second. A phase margin frequency
indicates where the model magnitude crosses 0 decibels.
e pm Returns the phase margins of the system.

o Weget:

B! LabVIFW MathScript

File Edt VYew Cperate Tools Window Help

Oukput Window

Yariables | Script | History

phase_data =

gt =

1.9972

0.99931

21.386

0.68233

| @ [E” M:Ywork|LabiLab WorkiMathScript LablSolutionstCode! Task 74 |

% TransFer function
num=[1];
dent=[1,0];
denz=[1,1]
den3=[1,1]

den = convidenl convidenZ, den3));
H = tF{rum, den)

% Bode Plok

bode{H)

% Margins and Phases
wlist=[0.01, 0.1, 0.2, 0.5, 1, 10, 100];

[mag, phase,w] = bade(H, wlist);
magdE=20*logl0{mag); %convert ko d
% [mag, phase,w] = bode(H);

mag_data = [w, magdg]
phase_data = [w, phase]

‘% Crossover Frequency--—--—-—---—-—-
[gmf, gm, pmf, pm] = margins{H)
rnargin{H)

1<

Command WWindow

~

B

| £

|o.0F3 |

Line: 6, Colurn: 1
Idle 2

Below we see the Bode diagram with the crossover-frequency and the gain margin and phase margin

for the system plotted in:

Tutorial: LabVIEW MathScript

40 Control Design and Simulation

File Items Tools Help

Graph 1
50—
w0 (Ul Paw
L e L R NI B R S o
o
% =0- Gain Margin [T
i PM Crossower [T
E -100-
s}
=
-150 -
-200 -, 1 1 1 1
100m 1 10 100 1k

Frequency (rad/s)

w0 ful) IK

-180%k deg [

Phase Margin IF
IF-

GM Crossaver

Phase (deq)

1
100rm 1 10 100 1k
Frequency (radis)

[End of Example]

Time Response

Class: timeresp

Description:

Use members of the timeresp class to create generic linear simulations and time domain plots for
step inputs, impulse inputs, and initial condition responses.

Below we see the different functions available in the timeresp class:

Function |Description

impulse Creates the impulze responsze plot of a system model
initial Creates the initial response plot of a system model
l=im Creates the linear simulation plot of a system model

randvector|Generates ane or two random vectors

ztep Creates the step response plot of a system model

Function: step

Description:

Tutorial: LabVIEW MathScript

41 Control Design and Simulation

This function creates a step response plot of the system model. You also can use this function to
return the step response of the model outputs. If the model is in state-space form, you also can use
this function to return the step response of the model states. This function assumes the initial model
states are zero. If you do not specify an output, this function creates a plot.

Example:

Given the following system:

We will plot the time response for the transfer function using the step function

The result is as follows:

File Edit ‘iew Project Operate Tools ‘Window Help
Graph Step Response

P

-

5

4
L}
-

2 3
£
£

T 5o

1-

0-

_1 —|

2]

_3 —|

4= 1 1 1 1 1 1 1 1 1 1
o 0,5 1 1,5 z 5 3 3,5 4 4,5 5
Time (5

The MathScript code:

H=tf£([1, 1], [1, -1, 3])
step (H)

[End of Example]

Tutorial: LabVIEW MathScript

6MathScript Node

The “MathScript Node” offers an intuitive means of combining graphical and textual code within
LabVIEW. The figure below shows the “MathScript Node” on the block diagram, represented by the
blue rectangle. Using “MathScript Nodes”, you can enter .m file script text directly or import it from a

text file.
|'H fir_fittar.vi Blnck Disgram G
e Bdt ifew Eropect Qpenste Jook fiedow Lelp — __
I T o e | [[7
Ll
Fitogom
i j"t_"' I | fpts = [0 fetoplow fpasslow];
— Lifssonfeu amplitude = [301.0 1.0];
Hateikes i + b=fir2{taps, fpts, amplitudaj; il ==l 1
B Foassion] 4 (HFI=freqa(b, [1. 512, 1; ;| N
o sH = 20" log {abs{H)): } &-UEJ
r2 designs a linegr-phase FIR filter using frequency sampling]|
W
1= »

MathScript
Node

You can define named inputs and outputs on the MathScript Node border to specify the data to
transfer between the graphical LabVIEW environment and the textual MathScript code.

You can associate .m file script variables with LabVIEW graphical programming, by wiring Node inputs
and outputs. Then you can transfer data between .m file scripts with your graphical LabVIEW
programming. The textual .m file scripts can now access features from traditional LabVIEW graphical

programming.

The MathScript Node is available from LabVIEW from the Functions Palette: Mathematics - Scripts
& Formulas

42

43 MathScript Node

Scripts & Formulas

[rre—
Chooee MBI T

O

Formula Node Script Modes

abi ’
L+ flH)
Farmula Formula Parsing
M * i M
f[H]lxﬂ _Ij]lﬂi "Rﬁy
10 & 2D Ewal. ., Calculus Zeros

If you click Ctrl+H you get help about the MathScript Node:

Context Help
| ~
MathScript Node =
input variable =4[1 Surnf = eyelsiza(A];
[optional) 2 fori=1in
input wariable i. Enﬁum.ﬂ'. = Sumd + & ifFactorial(); D%,;pptlit,:,::[giable
{aptional) 5 Delta = Surmd - exprocid);
BHHOF N = = 2pror auk
Executes LabVIEW MathScripts and yvour okher text-based scripts using the
MathScripk RT Module engine, You can use the MathSoript Mode o evaluate
scripts that vou create in the LabYIEW MathScript Window,
If a MathScripk Mode conkains a warning glyph, LabYIEW operates with slower
run-time performance For the node. You can modify wour scripk to remove the
warning glvph from the MathScript Mode and improve run-time performance.,
Detailed help 3
E[6[?]< 3.

Click “Detailed help” in order to get more information about the MathScript Node.

Use the NI Example Finder in order to find examples:

Tutorial: LabVIEW MathScript

44 MathScript Node
3 NI Example Finder
EBrowse Search | Submit Double-click an example to open it. Infarmation
[input ~ A
Browse according to:) instr) |
7 Task) inkernet
2] hwdsc
(@ Directary Structure 2 lvoop
[
=) LabVIEW Zone -
CONNECT TO ¥OUR COMMUNITY o] Mathacrpk - Heat Equation
Heat Equation,wi m
- Lceaf"l‘;r"ﬂ (3 Articlas +5) MathScript - Parallel Fractal
Parallel Fractal (split).wi m
&n@ Fﬂza;&siun 05 Respurces Parallel Fractal (bypical).vi]
Update Fractal vi
¢ | Code %y || User)
% Sharing) i 5] MathScript Shared Libraries 2
Mathscript - Calling a Windows DLL. i [—
o: sc:.gu MathScript - Using shared libraries, vi 21 Requirements
MathScript Shared Libraries. lvproj ﬂ_gg,
W LT 25) MathScript using Riemann Zeta
MathScript using Riemann Zeta,vi m
MathScript Fractal, vi m
[[Jinclude ni.com examples MathScript Fundamentals. vi =
L i com query bimeout [M
] measure
Hardware 2 Modulation
| Find hardware v | = motion ™
[CLimit results bo hardware Add to Favorites ‘ [Setup...] [Help] [Close]

6.1 Transferring MathScript Nodes between
Computers

If a script in a MathScript Node calls a user-defined function, LabVIEW uses the default search path
list to link the function call to the specified .m file. After you configure the default search path list and
save the VI that contains the MathScript Node, you do not need to reconfigure the MathScript search
path list when you open the VI on a different computer because LabVIEW looks for the .m file in the
directory where the .m file was located when you last saved the VI. However, you must maintain the
same relative path between the VI and the .m file.

6.2 Examples

Example: Using the MathScript Node

Here is an example of how you use the MathScript Node. On the left border you connect input
variables to the script, on the right border you have output variables. Right-click on the border and
select “Add Input” or “Add Output”.

Tutorial: LabVIEW MathScript

45

MathScript Node

[The MathSeript Node can be Found in the Functions = =Mathematics = =Scripts & Formulas Palette. |

q —

%a Comments are preceded by %
Gew=[123];

—_

Cimimn R B Ly [SR P]

% Square each element of x ko get s
Y o=x"E

%o Extrack w{1)
vl =y(l);

10 %o Calculake the Dok Product of x am
11 d = dakix, wi;

Index Array

m—..: o »

@ hﬂ: 1) in LabVIEW

¥

k(17 in MathScript Mode|

Dok Product

Poan

1. To add an input: {output)
ko the MathScript node,
right-click on the node and
select Add Input (Add
Cukput],

2. Scripks can be typed in
the MathScript node, or
imported by right-clicking on
the node and selecking
Imnpork,

3. To change the datatvpe
of an oukput, right-click on
the output and select
Choose Data Tvpe.

4. Use the Index Array VI ko
exkract the "first" element
of v, Qutside of the
MathScripk node, LabyYIEW
arrays are zero-indexed,

[End of Example]

Example: Calling a Windows DLL:

[Build the path to the header file. LLoad the Windows DLL. [Calculate the cursor position and call the Windows DLL.| [Unload the Windows DLL.|

[If this example is built into an ib

lapplication, it will look for the file Bteps]

lin the application’s data directory. [132} N

h] b theta=Z¥pRi (N
2 % =Cx + + * cos(theta);
] W] 3 w=Cy+r*sin(theta);
4 lib_callin, 'SetCursorPos, x, v);
T i ~lib_istoadedin) 00— 1 lib_unioad(n);
u 2 lib_load{library, header, ‘alias’, ni; m
Sap 8 [lDefau] ibrary] 2 end
I d x
App.Kind ¥
I iﬂ.k sader oy
= 51|
R} il 7
Kpixels
v
\pixels from the screen origin]
d

[End of Example]

Example: Using m-files in the MathScript Node:

Use the LabVIEW MathScript to create a m-file script (or you may use MATLAB to create the same
script):

Tutorial: LabVIEW MathScript

46 MathScript Node

B LabVIEW MathScript H=E

File Edit Yiew Operate Tools Window Help
Qutput Window Wariables | Script ‘ Histary |
For help, enter 'help classes!' e =
b D | @ ‘J"|_] | o TempiLabvIEw Data'lcalcx.m|
Tnknown symbol on line 1: & a1 2;3 4]; 3
h=[5;6]; 1
FrA[Ll Z:3 4]: x=inv{AJ*b
b=[5:6];
x=inv(4)*h
Urnknowt sywbol on line 1: 4
P
x =
-4
4.5
)
)\
Command Window
-
v v
o0 Ide Line! ¢, Calumn: 1

Right-click on the border of the MathScript Node and select “Import”, and then select the m-file you
want to import into the Node.

a=[12;3 4]
b=[5;e];
w=ir{Ar*h

Wisible Items
Help

Examples
Description gnd Tip. ..

StructuresPalette 3

Clear Scripk
Clear Script Breakpoints

Properties

Tutorial: LabVIEW MathScript

47 MathScript Node

Right-click on the right border and select “Add Output”. Then right-click on the output variable and
select “Create Indicator”.

Block Diagram:

a=[12;34];
b=[5;&];

w=inv (8D
KDEL]

The result is as follows (click the Run button):

A=
ol o
.
s

If you, e.g., add the following command in the MathScript Node: plot(x), the following window
appears:

File Items Tools Help

Graph

5

4-

3]

2|

1-

0-

-1-

2

3

4= 1 1 1 1 1 1 1 1 1 1
1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

[End of Example]

Tutorial: LabVIEW MathScript

48 MathScript Node

6.3 Exercises

Use the MathScript Node and test the same examples you did in the previous chapter (Chapter 4 -
“Linear Algebra Examples”)

Tutorial: LabVIEW MathScript

7MATLAB Script

The MATLAB Script calls the MATLAB software to execute scripts. You must have a licensed copy of
the MATLAB software version 6.5 or later installed on your computer to use MATLAB script nodes
because the script nodes invoke the MATLAB software script server to execute scripts written in the

MATLAB language syntax. Because LabVIEW uses ActiveX technology to implement MATLAB script
nodes, they are available only on Windows.

Search | 22 Wiew
4| <, .

MATLAE scripk

49

Appendix A — MathScript
Functions for Control and

Simulation

Here are some descriptions for the most used MathScript functions used in this Lab Work.

Function Description Example
plot Generates a plot. plot(y) plots the columns of y against the >X = [0:0.01:1];
. >Y = X.*X;
indexes of the columns. >plot (X, ¥)
tf Creates system model in transfer function form. You also can >num=[1];
use this function to state-space models to transfer function >den=[1, 1, 1];
form. >H = tf (num, den)
poles Returns the locations of the closed-loop poles of a system >num=[1]
model. >den=[1,1]
>H=tf (num, den)
>poles (H)
tfinfo Returns information about a transfer function system model. >[num, den, delay, Ts] =
tfinfo (SysInTF)
step Creates a step response plot of the system model. You also can >num=[1,1];
use this function to return the step response of the model >den=[1,-1,3];
outputs. If the model is in state-space form, you also can use this | >H=tf (num, den) ;
function to return the step response of the model states. This >t=[0:0.01:10];
function assumes the initial model states are zero. If you do not >step (H, t);
specify an output, this function creates a plot.
Isim Creates the linear simulation plot of a system model. This >t = [0:0.1:10]
function calculates the output of a system model when a set of >u = sin(0.1*pi*t)’
inputs excite the model, using discrete simulation. If you do not >lsim(SysIn, u, t)
specify an output, this function creates a plot.
Sys_orderl | Constructs the components of a first-order system model based >K = 1;
on a gain, time constant, and delay that you specify. You can use | >tau = 1;
this function to create either a state-space model or a transfer >H = sys_orderl (K, tau)
function model, depending on the output parameters you
specify.
Sys_order2 | Constructs the components of a second-order system model >dr = 0.5
based on a damping ratio and natural frequency you specify. You | >wn = 20
can use this function to create either a state-space model or a >[num, den] = sys_order2(wn, dr)

50

51 Error! Reference source not found.

transfer function model, depending on the output parameters >SysTF = tf (num, den)
you specify. >[A, B, C, D] = sys_order2(wn, dr)

>SysSS = ss(A, B, C, D)

damp Returns the damping ratios and natural frequencies of the poles | >[dr, wn, p] = damp(SysIn)
of a system model.

pid Constructs a proportional-integral-derivative (PID) controller >Ke = 0.5;
model in either parallel, series, or academic form. Refer to the >Ti = 0.25;
LabVIEW Control Design User Manual for information about >SysOutTF = pid(Kc, Ti,
'academic') ;
these three forms. academic')
conv Computes the convolution of two vectors or matrices. >Cl = [1, 2, 3];
>C2 = [3, 4]1;

>C = conv (Cl, C2)

series Connects two system models in series to produce a model >Hseries = series(Hl,HZ)
SysSer with input and output connections you specify

feedback Connects two system models together to produce a closed-loop | >SysClosed = feedback (SysIn_1,
. . . . SysIn 2)
model using negative or positive feedback connections S
Ss Constructs a model in state-space form. You also can use this >A = eye(2)
function to convert transfer function models to state-space >B = [0; 1]
form. >C = B'

>SysOutSS = ss (A, B, C)

ssinfo Returns information about a state-space system model. >A = [1, 1; -1, 2]
>B = [1, 21"
>C = [2, 1]
>D = 0

>SysInSS = ss(A, B, C, D)

>[A, B, C, D, Ts] = ssinfo (SysInSS)

pade Incorporates time delays into a system model using the Pade >[num, den] = pade(delay, order)
approximation method, which converts all residuals. You must >[a, B, C, D] = pade(delay, order)
specify the delay using the set function. You also can use this
function to calculate coefficients of numerator and denominator
polynomial functions with a specified delay.

bode Creates the Bode magnitude and Bode phase plots of a system >num=[4];
model. You also can use this function to return the magnitude >den=[2, 1];
and phase values of a model at frequencies you specify. If you >H = tf (num, den)
do not specify an output, this function creates a plot. >bode (H)
bodemag Creates the Bode magnitude plot of a system model. If you do >[mag, wout] = bodemag(SysIn)
not specify an output, this function creates a plot. >[mag, wout] =bodemag (SysIn, [wmin
wmax])
>[mag, wout] = bodemag (SysIn,
wlist)
margin Calculates and/or plots the smallest gain and phase margins ofa | >num = [1]
single-input single-output (SISO) system model. The gain margin | >den = [1, 5, 6]
indicates where the frequency response crosses at 0 decibels. >H = tf (num, den)
The phase margin indicates where the frequency response margin (H)

crosses -180 degrees. Use the margins function to return all gain
and phase margins of a SISO model.

Tutorial: LabVIEW MathScript

52

Error! Reference source not found.

margins

Calculates all gain and phase margins of a single-input
single-output (SISO) system model. The gain margins indicate
where the frequency response crosses at 0 decibels. The phase
margins indicate where the frequency response crosses -180
degrees. Use the margin function to return only the smallest
gain and phase margins of a SISO model.

>[gmf, gm, pmf, pm] = margins (H)

For more details about these functions, type “help cdt” to get an overview of all the functions used
for Control Design and Simulation. For detailed help about one specific function, type “help

<function_name>".

Plots functions: Here are some useful functions for creating plots: plot, figure, subplot, grid, axis,
title, xlabel, ylabel, semilogx — for more information about the plots function, type “help plots”.

Tutorial: LabVIEW MathScript

L= [

i
Heagskolen i Telemark

Telemark University College
Faculty of Technology
Kjolnes Ring 56
N-3914 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.
Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

Phone: +47 3557 5158

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

Room: B-237a

http://www.hit.no/
mailto:hans.p.halvorsen@hit.no
http://home.hit.no/~hansha/

