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Preface 

This document explains the basic concepts of using LabVIEW MathScript. 

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/ 

What is LabVIEW? 

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and 

development environment for a visual programming language from National Instruments. The 

graphical language is named "G". 

What is MATLAB? 

MATLAB is a tool for technical computing, computation and visualization in an integrated 

environment. MATLAB is an abbreviation for MATrix LABoratory, so it is well suited for matrix 

manipulation and problem solving related to Linear Algebra. 

MATLAB offers lots of additional Toolboxes for different areas such as Control Design, Image 

Processing, Digital Signal Processing, etc. 

What is MathScript? 

MathScript is a high-level, text- based programming language. MathScript includes more than 800 

built-in functions and the syntax is similar to MATLAB. You may also create custom-made m-file like 

you do in MATLAB. 

MathScript is an add-on module to LabVIEW but you don’t need to know LabVIEW programming in 

order to use MathScript. If you want to integrate MathScript functions (built-in or custom-made 

m-files) as part of a LabVIEW application and combine graphical and textual programming, you can 

work with the MathScript Node. 

In addition to the MathScript built-in functions, different add-on modules and toolkits installs 

additional functions. The LabVIEW Control Design and Simulation Module and LabVIEW Digital 

Filter Design Toolkit install lots of additional functions.  

You can more information about MathScript here: http://www.ni.com/labview/mathscript.htm 

 

How do you start using MathScript?  

You need to install LabVIEW and the LabVIEW MathScript RT Module. When necessary software is 

installed, start MathScript by open LabVIEW: 

http://home.hit.no/~hansha/
http://www.ni.com/labview/mathscript.htm


 

 

 

 

 

In the Getting Started window, select Tools -> MathScript Window...: 
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1 Introduction to LabVIEW 

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a platform and 

development environment for a visual programming language from National Instruments. The 

graphical language is named "G". Originally released for the Apple Macintosh in 1986, LabVIEW is 

commonly used for data acquisition, instrument control, and industrial automation on a variety of 

platforms including Microsoft Windows, various flavors of UNIX, Linux, and Mac OS X. The latest 

version of LabVIEW is version LabVIEW 2009, released in August 2009. Visit National Instruments at 

www.ni.com. 

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”. LabVIEW 

offers lots of additional Add-Ons and Toolkits. 

1.1 Dataflow programming 

The programming language used in LabVIEW, also referred to as G, is a dataflow programming 

language. Execution is determined by the structure of a graphical block diagram (the LV-source code) 

on which the programmer connects different function-nodes by drawing wires. These wires 

propagate variables and any node can execute as soon as all its input data become available. Since 

this might be the case for multiple nodes simultaneously, G is inherently capable of parallel 

execution. Multi-processing and multi-threading hardware is automatically exploited by the built-in 

scheduler, which multiplexes multiple OS threads over the nodes ready for execution. 

1.2  Graphical programming 

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle. 

LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three components: a 

block diagram, a front panel, and a connector panel. The last is used to represent the VI in the block 

diagrams of other, calling VIs. Controls and indicators on the front panel allow an operator to input 

data into or extract data from a running virtual instrument. However, the front panel can also serve 

as a programmatic interface. Thus a virtual instrument can either be run as a program, with the front 

panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel 

defines the inputs and outputs for the given node through the connector pane. This implies each VI 

can be easily tested before being embedded as a subroutine into a larger program. 

The graphical approach also allows non-programmers to build programs simply by dragging and 

dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW 

http://www.ni.com/
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programming environment, with the included examples and the documentation, makes it simple to 

create small applications. This is a benefit on one side, but there is also a certain danger of 

underestimating the expertise needed for good quality "G" programming. For complex algorithms or 

large-scale code, it is important that the programmer possess an extensive knowledge of the special 

LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW 

development systems offer the possibility of building stand-alone applications. Furthermore, it is 

possible to create distributed applications, which communicate by a client/server scheme, and are 

therefore easier to implement due to the inherently parallel nature of G-code. 

1.3 Benefits 

One benefit of LabVIEW over other development environments is the extensive support for accessing 

instrumentation hardware. Drivers and abstraction layers for many different types of instruments 

and buses are included or are available for inclusion. These present themselves as graphical nodes. 

The abstraction layers offer standard software interfaces to communicate with hardware devices. 

The provided driver interfaces save program development time. The sales pitch of National 

Instruments is, therefore, that even people with limited coding experience can write programs and 

deploy test solutions in a reduced time frame when compared to more conventional or competing 

systems. A new hardware driver topology (DAQmxBase), which consists mainly of G-coded 

components with only a few register calls through NI Measurement Hardware DDK (Driver 

Development Kit) functions, provides platform independent hardware access to numerous data 

acquisition and instrumentation devices. The DAQmxBase driver is available for LabVIEW on 

Windows, Mac OS X and Linux platforms. 

 

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/ 

1.4 LabVIEW MathScript RT Module 

The LabVIEW MathScript RT Module is an add-on module to LabVIEW. With LabVIEW MathScript RT 

Module you can: 

 Deploy your custom .m files to NI real-time hardware 

 Reuse many of your scripts created with The MathWorks, Inc. MATLAB® software and others 

 Develop your .m files with an interactive command-line interface 

 Embed your scripts into your LabVIEW applications using the MathScript Node 

 

 

http://home.hit.no/~hansha/
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2 LabVIEW MathScript RT 

Module 

You can work with LabVIEW MathScript through either of two interfaces: the “LabVIEW MathScript 

Interactive Window” or the “MathScript Node”. 

You can work with LabVIEW MathScript RT Module through both interactive and programmatic 

interfaces. For an interactive interface in which you can load, save, design, and execute your .m file 

scripts, you can work with the “MathScript Interactive Window”. To deploy your .m file scripts as part 

of a LabVIEW application and combine graphical and textual programming, you can work with the 

“MathScript Node”. 

The LabVIEW MathScript RT Module complements traditional LabVIEW graphical programming for 

such tasks as algorithm development, signal processing, and analysis. The LabVIEW MathScript RT 

Module speeds up these and other tasks by giving users a single environment in which they can 

choose the most effective syntax, whether textual, graphical, or a combination of the two. In 

addition, you can exploit the best of LabVIEW and thousands of publicly available .m file scripts from 

the web, textbooks, or your own existing m-script applications. LabVIEW MathScript RT Module is 

able to process your files created using the current MathScript syntax and, for backwards 

compatibility, files created using legacy MathScript syntaxes. LabVIEW MathScript RT Module can 

also process certain of your files utilizing other text-based syntaxes, such as files you created using 

MATLAB software. Because the MathScript RT engine is used to process scripts contained in a 

MathScript Windows or MathScript Node, and because the MathScript RT engine does not support 

all syntaxes, not all existing text-based scripts are supported. 

LabVIEW MathScript RT Module supports most of the functionality available in MATLAB, the syntax is 

also similar. 

 

For more details, see http://zone.ni.com/devzone/cda/tut/p/id/3257 

 

 

http://zone.ni.com/devzone/cda/tut/p/id/3257
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3 LabVIEW MathScript 

3.1 Introduction 

Requires: MathScript RT Module 

How do you start using MathScript? You need to install LabVIEW and the LabVIEW MathScript RT 

Module. When necessary software is installed, start MathScript by open LabVIEW: 

 

In the Getting Started window, select Tools -> MathScript Window...: 

 

 

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file script 

commands and see immediate results, variables and commands history. The window includes a 
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command-line interface where you can enter commands one-by-one for quick calculations, script 

debugging or learning. Alternatively, you can enter and execute groups of commands through a script 

editor window. 

As you work, a variable display updates to show the graphical / textual results and a history window 

tracks your commands. The history view facilitates algorithm development by allowing you to use the 

clipboard to reuse your previously executed commands. 

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also can enter 

batch scripts in a simple text editor window, loaded from a text file, or imported from a separate text 

editor. The “LabVIEW MathScript Window” provides immediate feedback in a variety of forms, such 

as graphs and text. 

 

 

 

Example: 
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[End of Example] 

3.2 Help 

You may also type help in your command window 

>>help 

Or more specific, e.g., 

>>help plot 

3.3 Examples 

I advise you to test all the examples in this text in LabVIEW MathScript in order to get familiar with 

the program and its syntax. All examples in the text are outlined in a frame like this: 

>> 

… 
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This is commands you should write in the Command Window. 

You type all your commands in the Command Window. I will use the symbol “>>” to illustrate that 

the commands should be written in the Command Window. 

Example: Matrices 

Defining the following matrix 

   
  
  

  

The syntax is as follows: 

>> A = [1 2;0 3] 

Or 

>> A = [1,2;0,3] 

If you, for an example, want to find the answer to 

                  

>>a=4 

>>b=3 

>>a+b 

MathScript then responds: 

ans = 

     7 

 

MathScript provides a simple way to define simple arrays using the syntax: 

“init:increment:terminator”. For instance: 

>> array = 1:2:9 

array = 

 1 3 5 7 9 

The code defines a variable named array (or assigns a new value to an existing variable with the 

name array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1 

(the init value), increments with each step from the previous value by 2 (the increment value), and 

stops once it reaches (or to avoid exceeding) 9 (the terminator value). 

The increment value can actually be left out of this syntax (along with one of the colons), to use a 

default value of 1. 

>> ari = 1:5 

ari = 
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 1 2 3 4 5 

The code assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default 

value of 1 is used as the incrementer. 

Note that the indexing is one-based, which is the usual convention for matrices in mathematics. This 

is atypical for programming languages, whose arrays more often start with zero. 

Matrices can be defined by separating the elements of a row with blank space or comma and using a 

semicolon to terminate each row. The list of elements should be surrounded by square brackets: []. 

Parentheses: () are used to access elements and subarrays (they are also used to denote a function 

argument list). 

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1] 

A = 

 16  3  2 13 

  5 10 11  8 

  9  6  7 12 

  4 15 14  1 

>> A(2,3) 

ans = 

 11 

 

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For 

example, a submatrix taken from rows 2 through 4 and columns 3 through 4 can be written as: 

>> A(2:4,3:4) 

ans = 

 11 8 

 7 12 

 14 1 

 

A square identity matrix of size n can be generated using the function eye, and matrices of any size 

with zeros or ones can be generated with the functions zeros and ones, respectively. 

>> eye(3) 

ans = 

 1 0 0 

 0 1 0 

 0 0 1 

>> zeros(2,3) 

ans = 

 0 0 0 

 0 0 0 

>> ones(2,3) 

ans = 

 1 1 1 

 1 1 1 
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3.4 Useful commands 

Here are some useful commands: 

Command Description 

eye(x), eye(x,y) Identity matrix of order x 

ones(x), ones(x,y) A matrix with only ones 

zeros(x), zeros(x,y) A matrix with only zeros 

diag([x y z]) Diagonal matrix 

size(A) Dimension of matrix A 

A’ Inverse of matrix A 

Calling functions In MathScript 

MathScript includes more than 800 built-in functions that you can use, e.g., in a previous task you 

used the plot function. 

 

Example: Built-in Functions 

Given the vector: 

>>x=[1 2 5 6 8 9 3] 

→ Find the mean value of the vector x. 

→ Find the minimum value of the vector x. 

→ Find the maximum value of the vector x. 

The MathScript Code is: 

x=[1 2 5 6 8 9 3] 

mean(x) 

min(x) 

max(x) 

[End of Example] 
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User-Defined Functions In MathScript 

MathScript includes more than 800 built-in functions that you can use but sometimes you need to 

create your own functions. 

To define your own function in MathScript, use the following syntax: 

function outputs = function_name(inputs) 

% documentation 

… 

 

Here is the procedure for creating a a user-defined function in MathScript: 
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Scripts 

A script is a sequence of MathScript commands that you want to perform to accomplish a task. When 

you have created the script you may save it as a m-file for later use. 

 

 

You may also have multiple Script Windows open at the same time by selecting “New Script Editor” 

in the File menu: 
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This gives: 
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3.5 Flow Control 

This chapter explains the basic concepts of flow control in MathScript. 

The topics are as follows: 

 If-else statement 

 Switch and case statement 

 For loop 

 While loop 

3.5.1 If-else Statement 

The if statement evaluates a logical expression and executes a group of statements when the 

expression is true. The optional elseif and else keywords provide for the execution of alternate 

groups of statements. An end keyword, which matches the if, terminates the last group of 

statements. The groups of statements are delineated by the four keywords—no braces or brackets 

are involved. 

Example: If-Else Statement 

Test the following code: 

n=5 

if n > 2 

    M = eye(n) 

elseif n < 2 

    M = zeros(n) 

else 

    M = ones(n) 

end 

[End of Example] 

3.5.2 Switch and Case Statement 

The switch statement executes groups of statements based on the value of a variable or expression. 

The keywords case and otherwise delineate the groups. Only the first matching case is executed. 

There must always be an end to match the switch. 

Example: Switch and Case Statement 

Test the following code: 

n=2 

switch(n) 
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    case 1 

        M = eye(n) 

    case 2 

        M = zeros(n) 

    case 3 

        M = ones(n) 

end 

[End of Example] 

3.5.3 For loop 

The for loop repeats a group of statements a fixed, predetermined number of times. A matching end 

delineates the statements. 

Example: For Loop 

Test the following code: 

 

m=5 

for n = 1:m 

    r(n) = rank(magic(n)); 

end 

r 

[End of Example] 

3.5.4 While loop 

The while loop repeats a group of statements an indefinite number of times under control of a logical 

condition. A matching end delineates the statements. 

Example: While Loop 

Test the following code: 

m=5; 

while m > 1 

    m = m - 1; 

    zeros(m) 

end 

[End of Example] 
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3.6 Plotting 

This chapter explains the basic concepts of creating plots in MathScript. 

Topics: 

 Basic Plot commands 

 

Example: Plotting 

Function plot can be used to produce a graph from two vectors x and y. The code: 

x = 0:pi/100:2*pi; 

y = sin(x); 

plot(x,y) 

produces the following figure of the sine function: 

 

[End of Example] 

 

Example: Plotting 

Three-dimensional graphics can be produced using the functions surf, plot3 or mesh. 

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10); 

f = sinc(sqrt((X/pi).^2+(Y/pi).^2)); 

mesh(X,Y,f); 

axis([-10 10 -10 10 -0.3 1]) 
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xlabel('{\bfx}') 

ylabel('{\bfy}') 

zlabel('{\bfsinc} ({\bfR})') 

hidden off 

This code produces the following 3D plot: 

 

 

[End of Example] 
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4 Linear Algebra Examples 

Requires: MathScript RT Module 

Linear algebra is a branch of mathematics concerned with the study of matrices, vectors, vector 

spaces (also called linear spaces), linear maps (also called linear transformations), and systems of 

linear equations. 

MathScript are well suited for Linear Algebra. 

4.1 Vectors 

Given a vector x 

   

  

  

 
  

       

Example: Vectors 

Given the following vector 

   
 
 
 
  

>> x=[1; 2; 3] 

x = 

     1 

     2 

     3 

The Transpose of vector x: 

                   

>> x' 

ans = 

     1     2     3 

[End of Example] 

 

The Length of vector x: 
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Orthogonality: 

      

4.2 Matrices 

Given a matrix A: 

   

       

   
       

          

Example: Matrices 

Given the following matrix: 

   
  
    

  

>> A=[0 1;-2 -3] 

A = 

     0     1 

    -2    -3  

[End of Example] 

 

4.2.1 Transpose 

The Transpose of matrix A: 

    

       

   
       

          

Example: Transpose 

Given the matrix: 

    
  
    

 
 

  
   
   

  

>> A' 

ans = 

     0    -2 



19  Linear Algebra Examples  

Tutorial: LabVIEW MathScript 

 

     1    -3 

[End of Example] 

4.2.2 Diagonal 

The Diagonal elements of matrix A is the vector 

         

   

   

 
   

                 

Example: Diagonal 

Find the diagonal elements of matrix A: 

>> diag(A) 

ans = 

     0 

    -3 

[End of Example] 

 

The Diagonal matrix Λ is given by: 

   

     
     
    
     

        

 

Given the Identity matrix I: 

   

    
    
    
    

        

Example: Identity Matrix 

Get the 3x3 Identity matrix: 

>> eye(3) 

ans = 

     1     0     0 

     0     1     0 

     0     0     1 
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[End of Example] 

4.2.3 Triangular 

Lower Triangular matrix L: 

   
   
   
   

  

Upper Triangular matrix U: 

   

   
   
   

  

4.2.4 Matrix Multiplication 

Given the matrices        and       , then 

            

where 

           

 

   

 

Example: Matrix Multiplication 

Matrix multiplication: 

>> A=[0 1;-2 -3] 

A = 

     0     1 

    -2    -3 

>> B=[1 0;3 -2] 

B = 

     1     0 

     3    -2 

>> A*B 

ans = 

     3    -2 

   -11     6 

[End of Example] 

 

Note! 
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4.2.5 Matrix Addition 

Given the matrices        and       , then 

             

 

Example: Matrix Addition 

Matrix addition: 

>> A=[0 1;-2 -3] 

>> B=[1 0;3 -2] 

>> A+B 

ans = 

     1     1 

     1    -5 

[End of Example] 

 

4.2.6 Determinant 

Given a matrix       , then the Determinant is given: 

 

           

Given a 2x2 matrix 

   
      

      
        

Then 
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Example: Determinant 

Find the determinant: 

A = 

     0     1 

    -2    -3 

>> det(A) 

ans = 

     2 

Notice that 

                     

and 

                

[End of Example] 

 

Example: Determinant 

Determinants: 

>> det(A*B) 

ans = 

    -4 

>> det(A)*det(B) 

ans = 

    -4 

>> det(A') 

ans = 

     2 

>> det(A) 

ans = 

     2 

[End of Example] 

 

4.2.7 Inverse Matrices 

The inverse of a quadratic matrix        is defined by: 

    

if 
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For a 2x2 matrix we have: 

   
      

      
        

The inverse     is given by 

    
 

       
 
       

       
        

Example: Inverse Matrices 

Inverse matrix: 

A = 

     0     1 

    -2    -3 

>> inv(A) 

ans = 

   -1.5000   -0.5000 

    1.0000         0 

[End of Example] 

 

Notice that: 

            

→ Prove this in MathScript 

4.3 Eigenvalues 

Given       , then the Eigenvalues is defined as: 

            

Example: Eigenvalues 

Find the Eigenvalues: 

A = 

     0     1 

    -2    -3 

>> eig(A) 

ans = 

    -1 

    -2 
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[End of Example] 

4.4 Solving Linear Equations 

Given the linear equation 

     

with the solution: 

       

(Assuming that the inverse of A exists) 

Example: Solving Linear Equations 

Solving the following equation: 

The equations 

         

          

may be written 

     

 
  
  

  
  

  
   

 
 
  

where 

   
  
  

  

   
  

  
  

   
 
 
  

The solution is: 

A = 

     1     2 

     3     4 

>> b=[5;6] 

b = 

     5 

     6 

>> x=inv(A)*b 
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x = 

   -4.0000 

    4.5000 

In MathScript you could also write “x=A\b”, which should give the same answer. This syntax can also 

be used when the inverse of A don’t exists. 

[End of Example] 

 

Example: Solving Linear Equations 

Illegal operation: 

>> A=[1 2;3 4;7 8] 

>> x=inv(A)*b 

??? Error using ==> inv 

Matrix must be square. 

>> x=A\b 

x = 

   -3.5000 

    4.1786 

[End of Example] 

4.5 LU factorization 

LU factorization of        is given by 

     

where 

L is a lower triangular matrix 

U is a upper triangular matrix 

The MathScript syntax is [L,U]=lu(A) 

Example: LU Factorization 

Find L and U: 

>> A=[1 2;3 4] 

>> [L,U]=lu(A) 

L = 

    0.3333    1.0000 

    1.0000         0 

U = 

    3.0000    4.0000 
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         0    0.6667 

[End of Example] 

 

Or sometimes LU factorization of        is given by 

         

where 

D is a diagonal matrix 

The MathScript syntax is [L,U,P]=lu(A) 

Example: LU Factorization 

Find L, U and P: 

>> A=[1 2;3 4] 

A = 

     1     2 

     3     4 

>> [L,U,P]=lu(A) 

L = 

    1.0000         0 

    0.3333    1.0000 

U = 

    3.0000    4.0000 

         0    0.6667 

P = 

     0     1 

     1     0 

[End of Example] 

4.6 The Singular Value Decomposition 

(SVD) 

The Singular value Decomposition (SVD) of the matrix        is given by 

       

where 

U is a orthogonal matrix 

V is a orthogonal matrix 
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S is a diagonal singular matrix 

Example: SVD Decomposition 

Find S, V and D: 

>> A=[1 2;3 4]; 

>> [U,S,V] = svd(A) 

U = 

   -0.4046   -0.9145 

   -0.9145    0.4046 

S = 

    5.4650         0 

         0    0.3660 

V = 

   -0.5760    0.8174 

   -0.8174   -0.5760 

[End of Example] 

4.7 Commands 

Command Description 

[L,U]=lu(A) 

[L,U,P]=lu(A) 

LU Factorization 

[U,S,V] = svd(A) Singular Value Decomposition (SVD ) 
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5 Control Design and 

Simulation 

Using LabVIEW MathScript for Control Design purposes you need to install the “Control Design and 

Simulation Module” in addition to the “MathScript RT Module” itself. 

Use the Control Design MathScript RT Module functions to design, analyze, and simulate linear 

controller models using a text-based language. The following is a list of Control Design MathScript RT 

Module classes of functions and commands that LabVIEW MathScript supports. 

Getting help about MathScript functions regarding the Control Design Toolkit (CDT), type “help cdt” 

in the Command Window in the MathScript environment. 

The following function classes exist: 

 

We will go through some of the classes and function in detail below: 

5.1 State-space models and Transfer 

functions 
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MathScript offers lots of functions for defining and manipulate state-space models and transfer 

functions. 

Class: contruct 

Description: 

Use functions in the construct class to construct linear time-invariant system models and to convert 

between model forms. 

Below we see the different functions available in the construct class: 

 

Below we will give some examples of how to use the most import functions in this class. 

5.1.1 PID 

Currently, the Proportional-Integral-Derivative (PID) algorithm is the most common control algorithm 

used in industry. 

In PID control, you must specify a process variable and a setpoint. The process variable is the system 

parameter you want to control, such as temperature, pressure, or flow rate, and the setpoint is the 

desired value for the parameter you are controlling. 

A PID controller determines a controller output value, such as the heater power or valve position. 

The controller applies the controller output value to the system, which in turn drives the process 

variable toward the setpoint value. 

Then the PID controller calculates the controller action, u(t): 

          
 

  
       

  

  

 

 

  

Where 
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   Controller gain 

   Integral time 

   Derivative time 

And   is the error 

        

SP – Setpoint 

PV – Process Variable 

 

 

Function: pid 

Description:  

Constructs a proportional-integral-derivative (PID) controller model in either parallel, series, or 

academic form. 

Examples: 

Kc = 0.5; 

Ti = 0.25; 

SysOutTF = pid(Kc, Ti, 'academic'); 

[End of Example] 

 

5.1.2 State-space model 

A state-space model is just a structured form or representation of the differential equations for a 

system. 

A linear State-space model: 

         

        

where x is the state vector and u is the input vector. A is called the system-matrix, and is square in all 

cases. 

Example: 
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The differential equations: 

            

        

May be written on state-space form: 

 
   
   

   
   
  

  
  

  
   

 
 
   

 

Function: ss 

Description:  

This function constructs a continuous or discrete linear system model in state-space form. You also 

can use this function to convert transfer function and zero-pole-gain models to state-space form. 

Examples: 

% Creates a state-space model 

A = eye(2) 

B = [0; 1] 

C = B' 

SysOutSS = ss(A, B, C) 

 

% Converts a zero-pole-gain model to state-space form 

z = 1 

p = [1, -1] 

k = 1 

SysIn = zpk(z, p, k) 

SysOutSS = ss(SysIn) 

[End of Example] 

5.1.3 Transfer function 

The transfer function of a linear system is defined as the ratio of the Laplace transform of the output 

variable to the Laplace transform of the input variable. 

     
    

    
 

Function tf 

Description:  

This function creates a continuous or discrete linear system model in transfer function form. You also 

can use this function to convert zero-pole-gain and state-space models to transfer function form. 
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Examples: 

>>s = tf('s') 

This specifies that you want to create the continuous transfer function s / 1. After you enter this 

command, you can use LabVIEW MathScript operands on this transfer function to define a 

zero-pole-gain or transfer function model.  

 

SysOutZPK = 4*(s + 2) / (s + 1) 

This example constructs a zero-pole-gain model with a gain of 4, a zero at -2, and a pole at -1. 

 

SysOutTF = (3*(s*s*s) + 2) / (4*(s*s*s*s) + 8) 

This example constructs the transfer function model 3s^3 + 2 / 4s^4 + 8. 

[End of Example] 

5.1.4 First Order Systems 

The following transfer function defines a first order system: 

     
 

    
 

Where 

  is the gain 

  is the Time constant 

Function sys_order1 

Description:  

This function constructs the components of a first-order system model based on a gain, time 

constant, and delay that you specify. You can use this function to create either a state-space model 

or a transfer function model, depending on the output parameters you specify. 

Inputs: 

K Specifies the gain matrix. K is a real matrix.  

tau Specifies the time constant, in seconds, which is the time required for the model output to reach 

63% of its final value. The default value is 0.  
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delay Specifies the response delay of the model, in seconds. The default value is 0. 

Examples: 

K = 0.5; 

tau = 1.5; 

SysOutTF = sys_order1(K, tau); 

[End of Example] 

5.1.5 Second Order Systems 

A standard second order transfer function model may be written like this: 

     
    

    
 

   
 

           
 
 

 

 
 
  

 
 
   

 
  

  
 

Where 

  is the gain 

 (zetais the relative damping factor 

  [rad/s] is the undamped resonance frequency. 

 

Function sys_order2 

Description:  

This function constructs the components of a second-order system model based on a damping ratio 

and natural frequency you specify. You can use this function to create either a state-space model or a 

transfer function model, depending on the output parameters you specify. 

Example: 

Examples of how to use the sys_order2 function: 

dr = 0.5 

wn = 20 

[num, den] = sys_order2(wn, dr) 

SysTF = tf(num, den) 

[A, B, C, D] = sys_order2(wn, dr) 

SysSS = ss(A, B, C, D) 

[End of Example] 

Class: connect 
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Description: 

Use members of the connect class to connect systems models together in various configurations. 

Below we see the different functions available in the connect class: 

 

 

Function series 

Description:  

This function connects two system models in series to produce a model SysSer with input and output 

connections you specify. The input models must be either continuous models or discrete models with 

identical sampling times. 

Example: 

Here is an example of how to use the series function. 

SysIn_1 = tf([1, 1], [1 -1, 3]) 

SysIn_2 = zpk([1], [1, -1], 1) 

SysSer = series(SysIn_1, SysIn_2) 

[End of Example] 

 

Class: convert 

Description: 

Use members of the convert class to convert a continuous system model to a discrete model, convert 

a discrete model to a continuous model, and resample a discrete model. You also can use members 

of this class to incorporate delays into a system model. 

Below we see the different functions available in the convert class: 
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5.1.6 Padé-approximation 

The Transfer function of a time-delay is: 

          

In some situations it is necessary to substitute      with an approximation, e.g., the 

Padé-approximation: 

     
         

        
 

         
       

 
 

Function: pade 

Description:  

This function incorporates time delays into a system model using the Pade approximation method, 

which converts all residuals. You must specify the delay using the set function. You also can use this 

function to calculate coefficients of numerator and denominator polynomial functions with a 

specified delay. 

Example: 

Examples of how to use the pade function: 

SysCon = zpk(1, 3.2, 6) 

SysCon = set(SysCon, 'inputdelay', 6, 'outputdelay', 1.1) 

SysDel = pade(SysCon, 2) 

 

delay = 1.2 

order = 3 

[num, den] = pade(delay, order) 

[End of Example] 
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5.2 Frequency Response Analysis 

The frequency response of a system is a frequency dependent function which expresses how a 

sinusoidal signal of a given frequency on the system input is transferred through the system. Each 

frequency component is a sinusoidal signal having a certain amplitude and a certain frequency. 

The frequency response is an important tool for analysis and design of signal filters and for analysis 

and design of control systems. 

The frequency response can found experimentally or from a transfer function model. 

The frequency response of a system is defined as the steady-state response of the system to a 

sinusoidal input signal. When the system is in steady-state it differs from the input signal only in 

amplitude (A) and phase angle (ω).  

If we have the input signal: 

             

The steady-state output signal will be: 

                   

A and   is a function of the frequency ω  o w  may wr                   

 

For a transfer function 

     
    

    
 

We have: 

             

            

Where       is the frequency response of the system, i.e., we may find the frequency response by 

setting      in the transfer function. 

 

5.2.1 Bode Diagram 

Bode diagrams are useful in frequency response analysis. The Bode diagram consists of 2 diagrams, 

the Bode magnitude diagram,      and the Bode phase diagram,     . 
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The     -axis is in decibel (dB) 

Where the decibel value of x is calculated as:                

The     -axis is in degrees (not radians) 

Function: bode 

Description:  

This function creates the Bode magnitude and Bode phase plots of a system model. You also can use 

this function to return the magnitude and phase values of a model at frequencies you specify. If you 

do not specify an output, this function creates a plot. 

Examples: 

We have the following transfer function 

     
    

    
 

 

   
 

We want to plot the Bode diagram for this transfer function: 

 

In MathScript we could write: 

num=[1]; 

den=[1,1]; 

H1=tf(num,den) 

bode(H1) 

[End of Example] 
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Function: margin 

Description:  

This function calculates and/or plots the smallest gain and phase margins of a single-input 

single-output (SISO) system model.  

The gain margin indicates where the frequency response crosses at 0 decibels (“crossover 

frequency”,   ).  

         

   is also the bandwidth of the system 

The phase margin indicates where the frequency response crosses -180 degrees (“crossover 

frequency”,     ). 

          

Examples: 

The following example illustrates the use of the margin function. 

num = [1] 

den = [1, 5, 6] 

H = tf(num, den) 

margin(H) 

[End of Example] 

 

Example: 

Given the following system: 

     
 

       
 

 

We want to plot the Bode diagram and find the crossover-frequencies for the system using 

MathScript. 

We use the following functions: tf, bode, margins and margin. 

 gmf is the gain margin frequencies, in radians/second. A gain margin frequency indicates 

where the model phase crosses -180 degrees.   

 gm Returns the gain margins of the system.  
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 pmf Returns the phase margin frequencies, in radians/second. A phase margin frequency 

indicates where the model magnitude crosses 0 decibels.  

 pm Returns the phase margins of the system. 

 We get: 

 

Below we see the Bode diagram with the crossover-frequency and the gain margin and phase margin 

for the system plotted in: 
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[End of Example] 

Time Response 

Class: timeresp 

Description: 

Use members of the timeresp class to create generic linear simulations and time domain plots for 

step inputs, impulse inputs, and initial condition responses. 

Below we see the different functions available in the timeresp class: 

 

Function: step 

Description:  
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This function creates a step response plot of the system model. You also can use this function to 

return the step response of the model outputs. If the model is in state-space form, you also can use 

this function to return the step response of the model states. This function assumes the initial model 

states are zero. If you do not specify an output, this function creates a plot. 

Example: 

Given the following system: 

     
   

      
 

We will plot the time response for the transfer function using the step function 

The result is as follows: 

 

 

The MathScript code: 

H = tf([1, 1], [1, -1, 3]) 

step(H) 

[End of Example] 
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6 MathScript Node 

The “MathScript Node” offers an intuitive means of combining graphical and textual code within 

LabVIEW. The figure below shows the “MathScript Node” on the block diagram, represented by the 

blue rectangle. Using “MathScript Nodes”, you can enter .m file script text directly or import it from a 

text file. 

 

You can define named inputs and outputs on the MathScript Node border to specify the data to 

transfer between the graphical LabVIEW environment and the textual MathScript code. 

You can associate .m file script variables with LabVIEW graphical programming, by wiring Node inputs 

and outputs. Then you can transfer data between .m file scripts with your graphical LabVIEW 

programming. The textual .m file scripts can now access features from traditional LabVIEW graphical 

programming. 

The MathScript Node is available from LabVIEW from the Functions Palette: Mathematics → Scripts 

& Formulas 
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If you click Ctrl+H you get help about the MathScript Node: 

 

Click “Detailed help” in order to get more information about the MathScript Node. 

Use the NI Example Finder in order to find examples: 
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6.1 Transferring MathScript Nodes between 

Computers 

If a script in a MathScript Node calls a user-defined function, LabVIEW uses the default search path 

list to link the function call to the specified .m file. After you configure the default search path list and 

save the VI that contains the MathScript Node, you do not need to reconfigure the MathScript search 

path list when you open the VI on a different computer because LabVIEW looks for the .m file in the 

directory where the .m file was located when you last saved the VI. However, you must maintain the 

same relative path between the VI and the .m file. 

6.2 Examples 

Example: Using the MathScript Node 

Here is an example of how you use the MathScript Node. On the left border you connect input 

variables to the script, on the right border you have output variables. Right-click on the border and 

select “Add Input” or “Add Output”. 
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[End of Example] 

 

Example: Calling a Windows DLL: 

 

[End of Example] 

 

Example: Using m-files in the MathScript Node: 

Use the LabVIEW MathScript to create a m-file script (or you may use MATLAB to create the same 

script): 
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Right-click on the border of the MathScript Node and select “Import”, and then select the m-file you 

want to import into the Node. 
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Right-click on the right border and select “Add Output”. Then right-click on the output variable and 

select “Create Indicator”. 

Block Diagram: 

 

The result is as follows (click the Run button): 

 

 

If you, e.g., add the following command in the MathScript Node: plot(x), the following window 

appears: 

 

[End of Example] 
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6.3 Exercises 

Use the MathScript Node and test the same examples you did in the previous chapter (Chapter 4 - 

“Linear Algebra Examples”) 
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7 MATLAB Script 

The MATLAB Script calls the MATLAB software to execute scripts. You must have a licensed copy of 

the MATLAB software version 6.5 or later installed on your computer to use MATLAB script nodes 

because the script nodes invoke the MATLAB software script server to execute scripts written in the 

MATLAB language syntax. Because LabVIEW uses ActiveX technology to implement MATLAB script 

nodes, they are available only on Windows. 
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Appendix A – MathScript 

Functions for Control and 

Simulation 

Here are some descriptions for the most used MathScript functions used in this Lab Work. 

Function Description Example 

plot Generates a plot. plot(y) plots the columns of y against the 

indexes of the columns. 

>X = [0:0.01:1]; 

>Y = X.*X; 

>plot(X, Y) 

tf Creates system model in transfer function form. You also can 

use this function to state-space models to transfer function 

form. 

>num=[1]; 

>den=[1, 1, 1]; 

>H = tf(num, den) 

poles Returns the locations of the closed-loop poles of a system 

model. 

>num=[1] 

>den=[1,1] 

>H=tf(num,den) 

>poles(H) 

tfinfo Returns information about a transfer function system model. >[num, den, delay, Ts] = 

tfinfo(SysInTF) 

step Creates a step response plot of the system model. You also can 

use this function to return the step response of the model 

outputs. If the model is in state-space form, you also can use this 

function to return the step response of the model states. This 

function assumes the initial model states are zero. If you do not 

specify an output, this function creates a plot. 

>num=[1,1]; 

>den=[1,-1,3]; 

>H=tf(num,den); 

>t=[0:0.01:10]; 

>step(H,t); 

lsim Creates the linear simulation plot of a system model. This 

function calculates the output of a system model when a set of 

inputs excite the model, using discrete simulation. If you do not 

specify an output, this function creates a plot. 

>t = [0:0.1:10] 

>u = sin(0.1*pi*t)' 

>lsim(SysIn, u, t) 

Sys_order1 Constructs the components of a first-order system model based 

on a gain, time constant, and delay that you specify. You can use 

this function to create either a state-space model or a transfer 

function model, depending on the output parameters you 

specify. 

>K = 1; 

>tau = 1; 

>H = sys_order1(K, tau) 

Sys_order2 Constructs the components of a second-order system model 

based on a damping ratio and natural frequency you specify. You 

can use this function to create either a state-space model or a 

>dr = 0.5 

>wn = 20 

>[num, den] = sys_order2(wn, dr) 
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transfer function model, depending on the output parameters 

you specify. 

>SysTF = tf(num, den) 

>[A, B, C, D] = sys_order2(wn, dr) 

>SysSS = ss(A, B, C, D) 

damp Returns the damping ratios and natural frequencies of the poles 

of a system model. 

>[dr, wn, p] = damp(SysIn) 

pid Constructs a proportional-integral-derivative (PID) controller 

model in either parallel, series, or academic form. Refer to the 

LabVIEW Control Design User Manual for information about 

these three forms.  

>Kc = 0.5; 

>Ti = 0.25; 

>SysOutTF = pid(Kc, Ti, 

'academic'); 

conv Computes the convolution of two vectors or matrices. >C1 = [1, 2, 3]; 

>C2 = [3, 4]; 

>C = conv(C1, C2) 

series Connects two system models in series to produce a model 

SysSer with input and output connections you specify 

>Hseries = series(H1,H2) 

feedback Connects two system models together to produce a closed-loop 

model using negative or positive feedback connections 

>SysClosed = feedback(SysIn_1, 

SysIn_2) 

ss Constructs a model in state-space form. You also can use this 

function to convert transfer function models to state-space 

form. 

>A = eye(2) 

>B = [0; 1] 

>C = B' 

>SysOutSS = ss(A, B, C) 

ssinfo Returns information about a state-space system model. >A = [1, 1; -1, 2] 

>B = [1, 2]' 

>C = [2, 1] 

>D = 0 

>SysInSS = ss(A, B, C, D) 

>[A, B, C, D, Ts] = ssinfo(SysInSS) 

pade Incorporates time delays into a system model using the Pade 

approximation method, which converts all residuals. You must 

specify the delay using the set function. You also can use this 

function to calculate coefficients of numerator and denominator 

polynomial functions with a specified delay. 

>[num, den] = pade(delay, order) 

>[A, B, C, D] = pade(delay, order) 

bode Creates the Bode magnitude and Bode phase plots of a system 

model. You also can use this function to return the magnitude 

and phase values of a model at frequencies you specify. If you 

do not specify an output, this function creates a plot. 

>num=[4]; 

>den=[2, 1]; 

>H = tf(num, den) 

>bode(H) 

bodemag Creates the Bode magnitude plot of a system model. If you do 

not specify an output, this function creates a plot. 

>[mag, wout] = bodemag(SysIn) 

>[mag, wout] = bodemag(SysIn, [wmin 

wmax]) 

>[mag, wout] = bodemag(SysIn, 

wlist) 

margin Calculates and/or plots the smallest gain and phase margins of a 

single-input single-output (SISO) system model. The gain margin 

indicates where the frequency response crosses at 0 decibels. 

The phase margin indicates where the frequency response 

crosses -180 degrees. Use the margins function to return all gain 

and phase margins of a SISO model. 

>num = [1] 

>den = [1, 5, 6] 

>H = tf(num, den) 

margin(H) 
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margins Calculates all gain and phase margins of a single-input 

single-output (SISO) system model. The gain margins indicate 

where the frequency response crosses at 0 decibels. The phase 

margins indicate where the frequency response crosses -180 

degrees. Use the margin function to return only the smallest 

gain and phase margins of a SISO model. 

>[gmf, gm, pmf, pm] = margins(H) 

For more details about these functions, type “help cdt” to get an overview of all the functions used 

for Control Design and Simulation. For detailed help about one specific function, type “help 

<function_name>”. 

Plots functions: Here are some useful functions for creating plots: plot, figure, subplot, grid, axis, 

title, xlabel, ylabel, semilogx – for more information about the plots function, type “help plots”. 
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