
data (can be any type) Were,
-EIB

This loop iS the producer Koop.

 Reiuslngihe queuesrops the consumer boots). .„e_..._, H

 ___, „_._,._„ ____ „___„..
This loop is a corssurner kiop.

l „.«.«„«„«›.«››~„«.«.<«.-i››r«»„›,»,›«»wm›f -f›v».«,„»›r«„=.~W».«›«,<.@«„,†R... B No Error 'E
~,[l]~›l'I i

k

›~ ,...„... ..„.....,„,..„..»,.„.....

Figure 8.16 Error handling in producer/consumer design pattern. Any error terminates a loop. Isthat what you want in a robust application?

The messages are put into a queue (enqueued) by the producer andremoved from the queue (dequeued) by the bottom consumer loop.Stopping the producer loop releases the queue and stops the consumer
loop when the dequeue function generates an error. If any subVIs in theconsumer loop were included in the error chain between the dequeuefunction and the stop condition, it would programmatically alter thebehavior by forcing' the loop to terminate on any error. The queuedmessage handler is a common design pattern for programming user-interface applications; however, because there is only one-way commu-nication between the loops, the producer loop will never know if. theconsumer loop terminated-it will just go on putting messages into thequeue. Clearly this is not a robust solution!

One ?exible error-handling scheme we've used, and seen used byothers, is based on the addition of an extra top-level error-handlingloop to which all error reports are passed via a global queue. Any VIis permitted to deposit an error in the queue at any time, which causesthe error handler to Wake up and evaluate that error. Figure 8.17shows the top-level error-handling loop. The reference to Error Queueis stored in ErrorQueue.vi (Figure 8.18). Any incoming error placedinto the queue is handled by the Simple Error Handler.vi. Figure 8.19shows one way to put the code into action.

Ø 1

I vu r _,

Queue name 3/ This loop iistens for queued error messagesI
ifm? Simple Err ?andlenvi

Obtain Queue V Dequeue Ekrnent
EE ._.. Queuederror«
E Z EI

|3

error ciuster ditatype

'CUP,...
Error Queue
subvl

Stop when Error Queue destroyed --

Figure 8.17 Error loop handle all errors. The Error Queue reference is stored inErrorQueue.vi (Figure 8.18).

Place any incoming errors imo the error queue.

Error Queue In ._,.. ...,._ .å 'nm i | ,....â Queue .¬.-L:Ü 3
.5 ,;› Reference

5 ._..._ ...__.. 5"'“"“fÄ'fÃ*_: ÃÄÄÃÄÃÃÃÃÃ. E... U
.5

error in ;;
.3 -»LE „ß „ „ni °"°' M"

Enqueue ioy error
otherwise error out = error rn RW' 'mc'E

'*'*'>'

Figure 8.18 ErrorQueue.vi enqueues incoming errors into
the Error Queue. The queue reference is stored in a shiftregister and remains valid until the queue is destroyed.

This *°°F' is " ' ° ~
in„. H* ..,› :J

Ii/\
Error Queue
subvl

E; - aa

Qµgµg mm; This loop listens for queued error messagesläl??
mm Simple Error Hindßeinví

error cruster data . Ohm“ Q?we U04-IHN* 5fUM"fE] ~~ Queued errorE.
_Vvv ¦¦

Error Queue
" subVE

E E« Stop when Error Queue destroyed«fig

Figure 8.19 ErrorQueue.vi and the error-handling loop in action. All errors arereported via the Error Queue.

