data (can be any type)

I | B

This loop is the producer loop.

-

| {0} "Queue Event™: Value Change

Releasing the
queue stops
the consumer loap(s).

X
b

51

it
This loop is a cansumer loop.
) M No Error bl
rﬁl ]
il

Figure 8.16 Error handling in producer/consumer design pattern. Any error terminates a loop. Is
that what you want in a robust application?

The messages are put into a queue (enqueued) by the producer and
removed from the queue (dequeued) by the bottom consumer loop.
Stopping the producer loop releases the queue and stops the consumer
loop when the dequeue function generates an error. If any subVIs in the
consumer loop were included in the error chain between the dequeue
function and the stop condition, it would programmatically alter the
behavior by forcing the loop to terminate on any error. The queued
message handler is a common design pattern for programming user-
interface applications; however, because there is only one-way commu-
nication between the loops, the producer loop will never know if the
consumer loop terminated—it will Jjust go on putting messages into the
queue. Clearly this is not a robust solution!

One flexible error-handling scheme we've used, and seen used by
others, is based on the addition of an extra top-level error-handling
loop to which all error reports are passed via a global queue. Any VI
is permitted to deposit an error in the queue at any time, which causes
the error handler to wake up and evaluate that error. Figure 8.17
shows the top-level error-handling loop. The reference to Error Queue
is stored in ErrorQueue.vi (Figure 8.18). Any incoming error placed
into the queue is handled by the Simple Error Handler.vi. Figure 8.19
shows one way to put the code into action.

Tvue!
Queuename )/

This loop listens for queued error messages

Simple Error Handler.vi

i ueue Element
error cluster datatype Obta": ,Q . -
S— == Queued error =
Ik

Errar Queue
subvt

Figure 8.17 Error loop handlesfall errors. The Error Queue reference is stored in

ErrorQueue.vi (Figure 8.18).

Place any incoming errors into the error queue.

Ereor Queue In

x Queue =
Referance

error gut

otherwise error out = error in Run ance

Figure 8.18 ErrorQueue.vi enqueues incoming errors into
the Error Queue. The queue reference is stored in a shift
register and remains valid until the queue is destroyed.

This loop is a consumer loog.

M "Read Data” A2 )

Errar Queus
subvi

: Stop when Errar Queue destroyed ~{@)

i @
i
Queue name This loop listens for queued error messages
Simple Error Handler.vi
ueue Element
error cluster datatyp d e
. b Queued error
Error Queue
subWVi i
% Stop when Error Queue destroyed m{@
=

Figure 8.19 ErrorQueue.vi and the error-handling loop in action. All errors are
reported via the Error Queue.



